1
|
Hong X, Zhang Y, Fu W, Wang L. Research progress on the role of ferroptosis in aortic dissection. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024:1-10. [PMID: 39694526 DOI: 10.3724/zdxbyxb-2024-0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Recent studies have shown that iron metabolism dysregulation and lipid peroxidation-induced ferroptosis, triggered by oxidative stress, play a key role in the development of aortic dissection. Dysregulated iron metabolism leads to excessive production of hydroxyl radicals due to abnormal iron levels and heme metabolism, while lipid peroxidation is linked to Xc- system dysfunction and accumulation of phospholipid hydroperoxides. These factors synergistically disrupt aortic homeostasis and drive ferroptosis of vascular cells, including endothelial and smooth muscle cells. Furthermore, disruptions in ferroptosis-related genes, along with risk factors such as smoking, epigenetic modifications such as protein methylation, and abnormalities in immune cells, particularly T cells, are closely linked to aortic dissection. Several small molecules and nanomaterials have shown potential in inhibiting ferroptosis in this context. This review elucidates the roles of ferroptosis in aortic dissection and proposes strategies for its targeted prevention and treatment.
Collapse
Affiliation(s)
- Xiang Hong
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen 361015, Fujian Province, China.
- Xiamen Municipal Vascular Disease Precise Diagnose & Treatment Lab, Xiamen 361015, Fujian Province, China.
| | - Yuchong Zhang
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Vascular Surgery Institute of Fudan University, National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Weiguo Fu
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen 361015, Fujian Province, China
- Xiamen Municipal Vascular Disease Precise Diagnose & Treatment Lab, Xiamen 361015, Fujian Province, China
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Vascular Surgery Institute of Fudan University, National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Lixin Wang
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen 361015, Fujian Province, China.
- Xiamen Municipal Vascular Disease Precise Diagnose & Treatment Lab, Xiamen 361015, Fujian Province, China.
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Vascular Surgery Institute of Fudan University, National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
2
|
Zhou X, Wang H, Yan B, Nie X, Chen Q, Yang X, Lei M, Guo X, Ouyang C, Ren Z. Ferroptosis in Cardiovascular Diseases and Ferroptosis-Related Intervention Approaches. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07642-5. [PMID: 39641901 DOI: 10.1007/s10557-024-07642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVE Cardiovascular diseases (CVDs) are major public health problems that threaten the lives and health of individuals. The article has reviewed recent progresses about ferroptosis and ferroptosis-related intervention approaches for the treatment of CVDs and provided more references and strategies for targeting ferroptosis to prevent and treat CVDs. METHODS A comprehensive review was conducted using the literature researches. RESULTS AND DISCUSSION Many ferroptosis-targeted compounds and ferroptosis-related genes may be prospective targets for treating CVDs and our review provides a solid foundation for further studies about the detailed pathological mechanisms of CVDs. CONCLUSION There are challenges and limitations about the translation of ferroptosis-targeted potential therapies from experimental research to clinical practice. It warrants further exploration to pursure safer and more effective ferroptosis-targeted thereapeutic approaches for CVDs.
Collapse
Affiliation(s)
- Xianpeng Zhou
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Hao Wang
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Biao Yan
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Xinwen Nie
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Qingjie Chen
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Xiaosong Yang
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Min Lei
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Xiying Guo
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Changhan Ouyang
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Zhanhong Ren
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China.
| |
Collapse
|
3
|
Shen J, Wu Z, Zhou Y, Yang D, Wang X, Yu B, Zhao K, Ding Y. Knockdown of SLC16A3 decreases extracellular lactate concentration in hepatocellular carcinoma, alleviates hypoxia and induces ferroptosis. Biochem Biophys Res Commun 2024; 733:150709. [PMID: 39303526 DOI: 10.1016/j.bbrc.2024.150709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
SLC16A3/monocarboxylate transporter 4 (MCT4) regulates intracellular lactate transport and is highly expressed in many tumors, indicating poor prognosis. It may be related to inducing hypoxia, apoptosis and other mechanisms, but the study of MCT4 in HCC is far from complete. In this study, we first analyzed the expression of SLC16A3 in HCC tumor and non-tumor tissue samples based on TCGA data and immunohistochemistry. Subsequently, the effects of SLC16A3 expression on cell proliferation and invasion were analyzed using hepatocellular carcinoma (HCC) lines, and Western blot (WB) analysis was performed to explore the changes in pathway proteins and ferroptosis proteins. Finally, the drug sensitivity was tested by CCK8 kit. We found that SLC16A3 was significantly upregulated in tumor tissues, and was significantly correlated with TNM stage, histological grade, and macrovascular invasion. TCGA data and WB analysis showed that the high expression of SLC16A3 induced hypoxia, and knockdown could reverse hypoxia and inhibit ERK phosphorylation, thus limiting the malignant behavior of HCC cells. Moreover, knockdown of SLC16A3 significantly increased the level of lipid peroxidation and reactive oxygen species (ROS), while the expressions of GPX4, DHODH and SLC7A11 were inhibited. The expression of SLC16A3 affected the sensitivity of HCC cells to chemotherapy and targeted drugs, and RNA sequencing data suggested that the expression level influenced tumor microenvironment and response to immunotherapy. So, we draw a conclude that SLC16A3 is associated with poor prognosis of HCC. Inhibition of SLC16A3 expression is a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Jie Shen
- Dept of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Zhongkai Wu
- Dept of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Yu Zhou
- Dept of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Dashuai Yang
- Dept of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Xin Wang
- Dept of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Bin Yu
- Dept of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Kailiang Zhao
- Dept of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China.
| | - Youming Ding
- Dept of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
4
|
Tao Y, Li G, Wang Z, Wang S, Peng X, Tang G, Li X, Liu J, Yu T, Fu X. MiR-1909-5p targeting GPX4 affects the progression of aortic dissection by modulating nicotine-induced ferroptosis. Food Chem Toxicol 2024; 191:114826. [PMID: 38897284 DOI: 10.1016/j.fct.2024.114826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/21/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE Aortic dissection (AD) is a prevalent and acute clinical catastrophe characterized by abrupt manifestation, swift progression, and elevated fatality rates. Despite smoking being a significant risk factor for AD, the precise pathological process remains elusive. This investigation endeavors to explore the mechanisms by which smoking accelerates AD through ferroptosis induction. METHODOLOGY In this novel study, we detected considerable endothelial cell death by ferroptosis within the aortic inner lining of both human AD patients with a smoking history and murine AD models induced by β-aminopropionitrile, angiotensin II, and nicotine. Utilizing bioinformatic approaches, we identified microRNAs regulating the expression of the ferroptosis inhibitor Glutathione peroxidase 4 (GPX4). Nicotine's impact on ferroptosis was further assessed in human umbilical vein endothelial cells (HUVECs) through modulation of miR-1909-5p. Additionally, the therapeutic potential of miR-1909-5p antagomir was evaluated in vivo in nicotine-exposed AD mice. FINDINGS Our results indicate a predominance of ferroptosis over apoptosis, pyroptosis, and necroptosis in the aortas of AD patients who smoke. Nicotine exposure instigated ferroptosis in HUVECs, where the miR-1909-5p/GPX4 axis was implicated. Modulation of miR-1909-5p in these cells revealed its regulatory role over GPX4 levels and subsequent endothelial ferroptosis. In vivo, miR-1909-5p suppression reduced ferroptosis and mitigated AD progression in the murine model. CONCLUSIONS Our data underscore the involvement of the miR-1909-5p/GPX4 axis in the pathogenesis of nicotine-induced endothelial ferroptosis in AD.
Collapse
Affiliation(s)
- Yan Tao
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Gang Li
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, Shandong, 250021, People's Republic of China; Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 324 Jingwu Road, Jinan, Shandong, 250021, People's Republic of China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Shizhong Wang
- The Department of Cardiology Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Xingang Peng
- The Department of Emergency General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Guozhang Tang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Jianhua Liu
- Ultrasound Medicine Department, Guangzhou First People's Hospital, Guangzhou, 510000, People's Republic of China.
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China.
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China.
| |
Collapse
|
5
|
Jiao T, Chen Y, Sun H, Yang L. Targeting ferroptosis as a potential prevention and treatment strategy for aging-related diseases. Pharmacol Res 2024; 208:107370. [PMID: 39181344 DOI: 10.1016/j.phrs.2024.107370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Ferroptosis, an emerging paradigm of programmed cellular necrosis posited in recent years, manifests across a spectrum of maladies with profound implications for human well-being. Numerous investigations substantiate that modulating ferroptosis, whether through inhibition or augmentation, plays a pivotal role in the etiology and control of numerous age-related afflictions, encompassing neurological, circulatory, respiratory, and other disorders. This paper not only summarizes the regulatory mechanisms of ferroptosis, but also discusses the impact of ferroptosis on the biological processes of aging and its role in age-related diseases. Furthermore, it scrutinizes recent therapeutic strides in addressing aging-related conditions through the modulation of ferroptosis. The paper consolidates the existing knowledge on potential applications of ferroptosis-related pharmacotherapies and envisages the translational prospects of ferroptosis-targeted interventions in clinical paradigms.
Collapse
Affiliation(s)
- Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Yiman Chen
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Haiyan Sun
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, Liaoning 110001, PR China.
| | - Lina Yang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China; Department of International Physical Examination Center, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China.
| |
Collapse
|
6
|
He Y, Wang X, Chen S, Luo H, Huo B, Guo X, Li R, Chen Y, Yi X, Wei X, Jiang DS. SP2509 functions as a novel ferroptosis inhibitor by reducing intracellular iron level in vascular smooth muscle cells. Free Radic Biol Med 2024; 219:49-63. [PMID: 38608823 DOI: 10.1016/j.freeradbiomed.2024.04.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Previous studies have shown that ferroptosis of vascular smooth muscle cells (VSMCs) is involved in the development of aortic dissection (AD) and that histone methylation regulates this process. SP2509 acts as a specific inhibitor of lysine-specific demethylase 1 (LSD1), which governs a variety of biological processes. However, the effect of SP2509 on VSMC ferroptosis and AD remains to be elucidated. This aim of this study was to investigate the role and underlying mechanism of SP2509-mediated histone methylation on VSMC ferroptosis. Here, a mouse model of AD was established, and significantly reduced levels of H3K4me1 and H3K4me2 (target of SP2509) were found in the aortas of AD mice. In VSMCs, SP2509 treatment led to a dose-dependent increase in H3K4me2 levels. Furthermore, we found that SP2509 provided equivalent protection to ferrostatin-1 against VSMC ferroptosis, as evidenced by increased cell viability, decreased cell death and lipid peroxidation. RNA-sequencing analysis and subsequent experiments revealed that SP2509 counteracted cystine deficiency-induced response to inflammation and oxidative stress. More importantly, we demonstrated that SP2509 inhibited the expression of TFR and ferritin to reduce intracellular iron levels, thereby effectively blocking the process of ferroptosis. Therefore, our findings indicate that SP2509 protects VSMCs from multiple stimulus-induced ferroptosis by reducing intracellular iron levels, thereby preventing lipid peroxidation and cell death. These findings suggest that SP2509 may be a promising drug to alleviate AD by reducing iron deposition and VSMC ferroptosis.
Collapse
MESH Headings
- Ferroptosis/drug effects
- Animals
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Mice
- Iron/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Oxidative Stress/drug effects
- Humans
- Disease Models, Animal
- Lipid Peroxidation/drug effects
- Phenylenediamines/pharmacology
- Male
- Cell Survival/drug effects
- Histones/metabolism
- Histones/genetics
- Histone Demethylases/metabolism
- Histone Demethylases/genetics
- Mice, Inbred C57BL
- Cyclohexylamines
Collapse
Affiliation(s)
- Yi He
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xingbo Wang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Siqi Chen
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hanshen Luo
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bo Huo
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xian Guo
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Li
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Chen
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiang Wei
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| | - Ding-Sheng Jiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Ye Z, Zhu S, Li G, Lu J, Huang S, Du J, Shao Y, Ji Z, Li P. Early matrix softening contributes to vascular smooth muscle cell phenotype switching and aortic dissection through down-regulation of microRNA-143/145. J Mol Cell Cardiol 2024; 192:1-12. [PMID: 38718921 DOI: 10.1016/j.yjmcc.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 05/04/2024] [Accepted: 05/04/2024] [Indexed: 05/14/2024]
Abstract
Thoracic aortic dissection (TAD) is characterized by extracellular matrix (ECM) dysregulation. Aberrations in the ECM stiffness can lead to changes in cellular functions. However, the mechanism by which ECM softening regulates vascular smooth muscle cell (VSMCs) phenotype switching remains unclear. To understand this mechanism, we cultured VSMCs in a soft extracellular matrix and discovered that the expression of microRNA (miR)-143/145, mediated by activation of the AKT signalling pathway, decreased significantly. Furthermore, overexpression of miR-143/145 reduced BAPN-induced aortic softening, switching the VSMC synthetic phenotype and the incidence of TAD in mice. Additionally, high-throughput sequencing of immunoprecipitated RNA indicated that the TEA domain transcription factor 1 (TEAD1) is a common target gene of miR-143/145, which was subsequently verified using a luciferase reporter assay. TEAD1 is upregulated in soft ECM hydrogels in vitro, whereas the switch to a synthetic phenotype in VSMCs decreases after TEAD1 knockdown. Finally, we verified that miR-143/145 levels are associated with disease severity and prognosis in patients with thoracic aortic dissection. ECM softening, as a result of promoting the VSMCs switch to a synthetic phenotype by downregulating miR-143/145, is an early trigger of TAD and provides a therapeutic target for this fatal disease. miR-143/145 plays a role in the early detection of aortic dissection and its severity and prognosis, which can offer information for future risk stratification of patients with dissection.
Collapse
Affiliation(s)
- Zhaofei Ye
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Shuolin Zhu
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Guoqi Li
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Jie Lu
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Shan Huang
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Jie Du
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Yihui Shao
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China.
| | - Zhili Ji
- Beijing Chaoyang Hospital of Capital Medical University, China.
| | - Ping Li
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China.
| |
Collapse
|
8
|
Hu T, Yu WP, Zou HX, Chai ZH, Le SY, Hu FJ, Wang YC, Huang H, Lai SQ, Liu JC. Role of dysregulated ferroptosis‑related genes in cardiomyocyte ischemia‑reperfusion injury: Experimental verification and bioinformatics analysis. Exp Ther Med 2023; 26:534. [PMID: 37869642 PMCID: PMC10587876 DOI: 10.3892/etm.2023.12233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/09/2023] [Indexed: 10/24/2023] Open
Abstract
Acute myocardial infarction is a life-threatening condition with high mortality and complication rates. Although myocardial reperfusion can preserve ischemic myocardial tissue, it frequently exacerbates tissue injury, a phenomenon known as ischemia-reperfusion injury (IRI). However, the underlying pathological mechanisms of IRI remain to be completely understood. Ferroptosis is a novel type of regulated cell death that is associated with various pathological conditions, including angiocardiopathy. The purpose of this article was to elucidate the possible mechanistic role of ferroptosis in IRI through bioinformatics analysis and experimental validation. Healthy and IRI heart samples were screened for differentially expressed ferroptosis-related genes and functional enrichment analysis was performed to determine the potential crosstalk and pathways involved. A protein-protein interaction network was established for IRI, and 10 hub genes that regulate ferroptosis, including HIF1A, EGFR, HMOX1, and ATF3 were identified. In vitro, an anoxia/reoxygenation (A/R) injury model was established using H9c2 cardiomyoblasts to validate the bioinformatics analysis results, and extensive ferroptosis was detected. A total of 4 key hub genes and 3 key miRNAs were also validated. It was found that IRI was related to the aberrant infiltration of immune cells and the small-molecule drugs that may protect against IRI by preventing ferroptosis were identified. These results provide novel insights into the role of ferroptosis in IRI, which can help identify novel therapeutic targets.
Collapse
Affiliation(s)
- Tie Hu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wen-Peng Yu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hua-Xi Zou
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhi-Hao Chai
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shu-Yu Le
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fa-Jia Hu
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yi-Cheng Wang
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Huang Huang
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Song-Qing Lai
- Institute of Cardiovascular Surgical Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ji-Chun Liu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
9
|
Zou HX, Hu T, Zhao JY, Qiu BQ, Zou CC, Xu QR, Liu JC, Lai SQ, Huang H. Exploring Dysregulated Ferroptosis-Related Genes in Septic Myocardial Injury Based on Human Heart Transcriptomes: Evidence and New Insights. J Inflamm Res 2023; 16:995-1015. [PMID: 36923465 PMCID: PMC10010745 DOI: 10.2147/jir.s400107] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/25/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction Sepsis is currently a common condition in emergency and intensive care units, and is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Cardiac dysfunction caused by septic myocardial injury (SMI) is associated with adverse prognosis and has significant economic and human costs. The pathophysiological mechanisms underlying SMI have long been a subject of interest. Recent studies have identified ferroptosis, a form of programmed cell death associated with iron accumulation and lipid peroxidation, as a pathological factor in the development of SMI. However, the current understanding of how ferroptosis functions and regulates in SMI remains limited, particularly in the absence of direct evidence from human heart. Methods We performed a sequential comprehensive bioinformatics analysis of human sepsis cardiac transcriptome data obtained through the GEO database. The lipopolysaccharide-induced mouse SMI model was used to validate the ferroptosis features and transcriptional expression of key genes. Results We identified widespread dysregulation of ferroptosis-related genes (FRGs) in SMI based on the human septic heart transcriptomes, deeply explored the underlying biological mechanisms and crosstalks, followed by the identification of key functional modules and hub genes through the construction of protein-protein interaction network. Eight key FRGs that regulate ferroptosis in SMI, including HIF1A, MAPK3, NOX4, PPARA, PTEN, RELA, STAT3 and TP53, were identified, as well as the ferroptosis features. All the key FRGs showed excellent diagnostic capability for SMI, part of them was associated with the prognosis of sepsis patients and the immune infiltration in the septic hearts, and potential ferroptosis-modulating drugs for SMI were predicted based on key FRGs. Conclusion This study provides human septic heart transcriptome-based evidence and brings new insights into the role of ferroptosis in SMI, which is significant for expanding the understanding of the pathobiological mechanisms of SMI and exploring promising diagnostic and therapeutic targets for SMI.
Collapse
Affiliation(s)
- Hua-Xi Zou
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Tie Hu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Jia-Yi Zhao
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Experimental Program, Huan Kui College, Nanchang University, Nanchang, People’s Republic of China
| | - Bai-Quan Qiu
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Chen-Chao Zou
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Qi-Rong Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Ji-Chun Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Song-Qing Lai
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Huang Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
10
|
Luo J, Shi H, Ran H, Zhang C, Wu Q, Shao Y. Identification of key biomarkers and immune infiltration in the thoracic acute aortic dissection by bioinformatics analysis. BMC Cardiovasc Disord 2023; 23:75. [PMID: 36755239 PMCID: PMC9909862 DOI: 10.1186/s12872-023-03110-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Thoracic acute aortic dissection (TAAD), one of the most fatal cardiovascular diseases, leads to sudden death, however, its mechanism remains unclear. METHODS Three Gene Expression Omnibus datasets were employed to detect differentially expressed genes (DEGs). A similar function and co-expression network was identified by weighted gene co-expression network analysis. The least absolute shrinkage and selection operator, random forest, and support vector machines-recursive feature elimination were utilized to filter diagnostic TAAD markers, and then screened markers were validated by quantitative real-time PCR and another independent dataset. CIBERSORT was deployed to analyze and evaluate immune cell infiltration in TAAD tissues. RESULTS Twenty-five DEGs were identified and narrowed down to three after screening. Finally, two genes, SLC11A1 and FGL2, were verified by another dataset and qRT-PCR. Function analysis revealed that SLC11A1 and FGL2 play significant roles in immune-inflammatory responses. CONCLUSION SLC11A1 and FGL2 are differently expressed in aortic dissection and may be involved in immune-inflammatory responses.
Collapse
Affiliation(s)
- Jun Luo
- grid.452206.70000 0004 1758 417XDepartment of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Haoming Shi
- grid.203458.80000 0000 8653 0555Chongqing Medical University, Chongqing, China
| | - Haoyu Ran
- grid.203458.80000 0000 8653 0555Chongqing Medical University, Chongqing, China
| | - Cheng Zhang
- grid.452206.70000 0004 1758 417XDepartment of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Qingchen Wu
- grid.452206.70000 0004 1758 417XDepartment of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Yue Shao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, China.
| |
Collapse
|
11
|
Aberrant expression of KDM1A inhibits ferroptosis of lung cancer cells through up-regulating c-Myc. Sci Rep 2022; 12:19168. [PMID: 36357457 PMCID: PMC9649633 DOI: 10.1038/s41598-022-23699-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Ferroptosis is a cell death process caused by metabolic dysfunction with the feature of aberrant iron accumulation. Emerging studies have identified that ferroptosis is an important biological function involving in the tumorigenesis, and targeting ferroptosis could provide promising therapeutic targets for lung cancer. However, such therapeutic strategies show limited therapeutic effect owing to drug resistance and other unknown underlying mechanisms. In this study, lysine-specific demethylase 1 (LSD1/KDM1A) was found to be significantly upregulated in lung cancer cells and tissues. The patients with KDM1A downregulation displayed the good prognosis. Using gene set enrichment analysis (GSEA), we demonstrated that KDM1A-associated genes might participate in the regulation of cell ferroptosis and Myc signaling in lung cancer. Knockdown of KDM1A inhibited the level of c-Myc and increased the concentration of malondialdehyde (MDA) and irons in human lung cancer cells H1299 and A549. Downregulation of c-Myc could facilitate KDM1A knockdown-mediated ferroptosis. Our study has elucidated the effect of KDM1A/c-Myc regulatory axis in the ferroptosis resistance of lung cancer cells.
Collapse
|
12
|
Li S, Zhang Q, Chen Z, Huang Z, Zhang L, Chen F. Novel insight into ferroptosis-related genes, molecular subtypes, and immune characteristics in intracranial aneurysms. Inflamm Res 2022; 71:1347-1364. [PMID: 36057911 DOI: 10.1007/s00011-022-01633-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES This study aimed to identify the role of ferroptosis in intracranial aneurysm (IA). METHODS GSE122897, GSE75436, GSE15629, and GSE75434 datasets were downloaded from the Gene Expression Omnibus database. The differentially expressed ferroptosis-related genes (DEFRGs) were selected to construct a diagnostic model integrating with machine learning. Then, a consensus clustering algorithm was performed to classify IA patients into distinct ferroptosis-related clusters. Functional analyses, including GO, KEGG, GSVA, and GSEA analyses, were conducted to elucidate the underlying mechanisms. ssGSEA and xCell algorithms were performed to uncover the immune characteristics. RESULTS We identified 28 DEFRGs between IAs and controls from the GSE122897 dataset. GO and KEGG results showed that these genes were enriched in cytokine activity, ferroptosis, and the IL-17 signaling pathway. Immune analysis showed that the IAs had higher levels of immune infiltration. A four FRGs model (MT3, CDKN1A, ZEP69B, and ABCC1) was established and validated with great IA diagnostic ability. We divided the IA samples into two clusters and found that cluster 2 had a higher proportion of rupture and immune infiltration. We identified 10 ferroptosis phenotypes-related markers in IAs. CONCLUSION Ferroptosis and the immune microenvironment are closely associated with IAs, providing a basis for understanding the IA development.
Collapse
Affiliation(s)
- Shifu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, 410008, Hunan, China
| | - Qian Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, 410008, Hunan, China
| | - Zhou Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, 410008, Hunan, China
| | - Zheng Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, 410008, Hunan, China
| | - Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, 410008, Hunan, China.,Departments of Neurosurgery and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06520-8082, USA
| | - Fenghua Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, 410008, Hunan, China.
| |
Collapse
|
13
|
Ren J, Lv Y, Wu L, Chen S, Lei C, Yang D, Li F, Liu C, Zheng Y. Key ferroptosis-related genes in abdominal aortic aneurysm formation and rupture as determined by combining bioinformatics techniques. Front Cardiovasc Med 2022; 9:875434. [PMID: 36017103 PMCID: PMC9395677 DOI: 10.3389/fcvm.2022.875434] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives Abdominal aortic aneurysm (AAA) is a cardiovascular disease with high mortality and pathogenesis closely related to various cell death types, e.g., autophagy, apoptosis and pyroptosis. However, the association between AAA and ferroptosis is unknown. Methods GSE57691 and GSE98278 dataset were obtained from the Gene Expression Omnibus database, and a ferroptosis-related gene (FRG) set was downloaded from the FerrDb database. These data were normalized, and ferroptosis-related differentially expressed genes (FDEGs, AAA vs. normal samples) were identified using the limma package in R. FRGs expression was analyzed by Gene Set Expression Analysis (GSEA), and FDEGs were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) pathway enrichment analyses using the clusterProfiler package in R and ClueGO in Cytoscape. Protein–protein interaction networks were assembled using Cytoscape, and crucial FDEGs were identified using CytoHubba. Critical FDEG transcription factors (TFs) were predicted with iRegulon. FDEGs were verified in GSE98278 set, and key FDEGs in AAA (compared with normal samples) and ruptured AAA (RAAA; compared with AAA samples) were identified. Ferroptosis-related immune cell infiltration and correlations with key genes were analyzed by CIBERSORT. Key FEDGs were reverified in Ang II-induced AAA models of ApoE–/– and CD57B/6J mice by immunofluorescence assay. Results In AAA and normal samples, 40 FDEGs were identified, and the expression of suppressive FRGs was significantly downregulated with GSEA. For FDEGs, the GO terms were response to oxidative stress and cellular response to external stimulus, and the KEGG pathways were the TNF and NOD-like receptor signaling pathways. IL6, ALB, CAV1, PTGS2, NOX4, PRDX6, GPX4, HSPA5, HSPB1, and NCF2 were the most enriched genes in the crucial gene cluster. CEBPG, NFAT5, SOX10, GTF2IRD1, STAT1, and RELA were potential TFs affecting these crucial genes. Ferroptosis-related immune cells involved in AAA formation were CD8+ T, naive CD4+ T, and regulatory T cells (Tregs); M0 and M2 macrophages; and eosinophils. Tregs were also involved in RAAA. GPX4, SLC2A1, and PEBP1 expression was downregulated in both the RAAA and AAA samples. GPX4 and PEBP1 were more important in AAA because they influenced ferroptosis-related immune cell infiltration, and SLC2A1 was more important in RAAA. Conclusions This is the first study to show that ferroptosis is crucial to AAA/RAAA formation. The TNF and NOD-like signaling pathways and ferroptosis-related immune cell infiltration play key roles in AAA/RAAA. GPX4 is a key ferroptosis-related gene in AAA. Ferroptosis and related genes might be promising targets in the treatment of AAA/RAAA.
Collapse
Affiliation(s)
- Jinrui Ren
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanze Lv
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianglin Wu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Siliang Chen
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuxiang Lei
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Yang
- Department of Computational Biology and Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangda Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changzheng Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, China
| | - Yuehong Zheng
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Complex Severe and Rare Disease, Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yuehong Zheng,
| |
Collapse
|
14
|
Zou HX, Qiu BQ, Zhang ZY, Hu T, Wan L, Liu JC, Huang H, Lai SQ. Dysregulated autophagy-related genes in septic cardiomyopathy: Comprehensive bioinformatics analysis based on the human transcriptomes and experimental validation. Front Cardiovasc Med 2022; 9:923066. [PMID: 35983185 PMCID: PMC9378994 DOI: 10.3389/fcvm.2022.923066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Septic cardiomyopathy (SCM) is severe organ dysfunction caused by sepsis that is associated with poor prognosis, and its pathobiological mechanisms remain unclear. Autophagy is a biological process that has recently been focused on SCM, yet the current understanding of the role of dysregulated autophagy in the pathogenesis of SCM remains limited and uncertain. Exploring the molecular mechanisms of disease based on the transcriptomes of human pathological samples may bring the closest insights. In this study, we analyzed the differential expression of autophagy-related genes in SCM based on the transcriptomes of human septic hearts, and further explored their potential crosstalk and functional pathways. Key functional module and hub genes were identified by constructing a protein–protein interaction network. Eight key genes (CCL2, MYC, TP53, SOD2, HIF1A, CTNNB1, CAT, and ADIPOQ) that regulate autophagy in SCM were identified after validation in a lipopolysaccharide (LPS)-induced H9c2 cardiomyoblast injury model, as well as the autophagic characteristic features. Furthermore, we found that key genes were associated with abnormal immune infiltration in septic hearts and have the potential to serve as biomarkers. Finally, we predicted drugs that may play a protective role in SCM by regulating autophagy based on our results. Our study provides evidence and new insights into the role of autophagy in SCM based on human septic heart transcriptomes, which would be of great benefit to reveal the molecular pathological mechanisms and explore the diagnostic and therapeutic targets for SCM.
Collapse
Affiliation(s)
- Hua-Xi Zou
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bai-Quan Qiu
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ze-Yu Zhang
- Institute of Nanchang University Trauma Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tie Hu
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li Wan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ji-Chun Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huang Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Huang Huang,
| | - Song-Qing Lai
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Song-Qing Lai,
| |
Collapse
|
15
|
Li N, Yi X, He Y, Huo B, Chen Y, Zhang Z, Wang Q, Li Y, Zhong X, Li R, Zhu XH, Fang Z, Wei X, Jiang DS. Targeting Ferroptosis as a Novel Approach to Alleviate Aortic Dissection. Int J Biol Sci 2022; 18:4118-4134. [PMID: 35844806 PMCID: PMC9274489 DOI: 10.7150/ijbs.72528] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/04/2022] [Indexed: 12/12/2022] Open
Abstract
A variety of programmed cell death types have been shown to participate in the loss of smooth muscle cells (SMCs) during the development of aortic dissection (AD), but it is still largely unclear whether ferroptosis is involved in the development of AD. In the present study, we found that the expression of key ferroptosis regulatory proteins, solute carrier family 7 member 11 (SLC7A11), ferroptosis suppressor protein 1 (FSP1) and glutathione peroxidase 4 (GPX4) were downregulated in aortas of Stanford type A AD (TAAD) patients, and liproxstatin-1, a specific inhibitor of ferroptosis, obviously abolished the β-aminopropionitrile (BAPN)-induced development and rupture of AD in mice. Furthermore, the expression of methyltransferase-like 3 (METTL3), a major methyltransferase of RNA m6A, was remarkably upregulated in the aortas of TAAD patients, and the protein levels of METTL3 were negatively correlated with SLC7A11 and FSP1 levels in human aortas. Overexpression of METTL3 in human aortic SMCs (HASMCs) inhibited, while METTL3 knockdown promoted SLC7A11 and FSP1 expression. More importantly, overexpression of METTL3 facilitated imidazole ketone erastin- and cystine deprivation-induced ferroptosis, while knockdown of METTL3 repressed ferroptosis of HASMCs. Overexpression of either SLC7A11 or FSP1 largely abrogated the effect of METTL3 on HASMC ferroptosis. Therefore, we have revealed that ferroptosis is a critical cause of AD in both humans and mice and that METTL3 promotes ferroptosis of HASMCs by inhibiting the expression of SLC7A11 and FSP1. Thus, targeting ferroptosis or m6A RNA methylation is a potential novel strategy for the treatment of AD.
Collapse
Affiliation(s)
- Na Li
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yi He
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bo Huo
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Chen
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zihao Zhang
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qunhui Wang
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Li
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoxuan Zhong
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Li
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xue-Hai Zhu
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Zemin Fang
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| |
Collapse
|
16
|
Guo Y, Zhang W, Zhou X, Zhao S, Wang J, Guo Y, Liao Y, Lu H, Liu J, Cai Y, Wu J, Shen M. Roles of Ferroptosis in Cardiovascular Diseases. Front Cardiovasc Med 2022; 9:911564. [PMID: 35677693 PMCID: PMC9168067 DOI: 10.3389/fcvm.2022.911564] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/02/2022] [Indexed: 12/14/2022] Open
Abstract
Ferroptosis is an iron-dependent regulated cell death characterized by lipid peroxidation and iron overload, which is different from other types of programmed cell death, including apoptosis, necroptosis, autophagy, and pyroptosis. Over the past years, emerging studies have shown a close relation between ferroptosis and various cardiovascular diseases such as atherosclerosis, acute myocardial infarction, ischemia/reperfusion injury, cardiomyopathy, and heart failure. Herein, we will review the contributions of ferroptosis to multiple cardiovascular diseases and the related targets. Further, we discuss the potential ferroptosis-targeting strategies for treating different cardiovascular diseases.
Collapse
Affiliation(s)
- Yuting Guo
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Cardiology, Hainan Hospital of Chinese PLA General Hosptial, Hainan Geriatric Disease Clinical Medical Research Center, Hainan Branch of China Geriatric Disease Clinical Research Center, Hainan, China
| | - Wei Zhang
- Department of Cardiology, Second Medical Center, PLA General Hospital, Beijing, China
| | - Xinger Zhou
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Cardiology, Hainan Hospital of Chinese PLA General Hosptial, Hainan Geriatric Disease Clinical Medical Research Center, Hainan Branch of China Geriatric Disease Clinical Research Center, Hainan, China
| | - Shihao Zhao
- Department of Cardiology, Hainan Hospital of Chinese PLA General Hosptial, Hainan Geriatric Disease Clinical Medical Research Center, Hainan Branch of China Geriatric Disease Clinical Research Center, Hainan, China
| | - Jian Wang
- Department of Cardiology, Hainan Hospital of Chinese PLA General Hosptial, Hainan Geriatric Disease Clinical Medical Research Center, Hainan Branch of China Geriatric Disease Clinical Research Center, Hainan, China
| | - Yi Guo
- Department of Cardiology, Hainan Hospital of Chinese PLA General Hosptial, Hainan Geriatric Disease Clinical Medical Research Center, Hainan Branch of China Geriatric Disease Clinical Research Center, Hainan, China
| | - Yichao Liao
- Department of Cardiology, Hainan Hospital of Chinese PLA General Hosptial, Hainan Geriatric Disease Clinical Medical Research Center, Hainan Branch of China Geriatric Disease Clinical Research Center, Hainan, China
| | - Haihui Lu
- Department of Cardiology, Hainan Hospital of Chinese PLA General Hosptial, Hainan Geriatric Disease Clinical Medical Research Center, Hainan Branch of China Geriatric Disease Clinical Research Center, Hainan, China
| | - Jie Liu
- Department of Cardiology, Hainan Hospital of Chinese PLA General Hosptial, Hainan Geriatric Disease Clinical Medical Research Center, Hainan Branch of China Geriatric Disease Clinical Research Center, Hainan, China
| | - Yanbin Cai
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiao Wu
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
- Jiao Wu
| | - Mingzhi Shen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Cardiology, Hainan Hospital of Chinese PLA General Hosptial, Hainan Geriatric Disease Clinical Medical Research Center, Hainan Branch of China Geriatric Disease Clinical Research Center, Hainan, China
- *Correspondence: Mingzhi Shen
| |
Collapse
|
17
|
Role of Necroptosis and Immune Infiltration in Human Stanford Type A Aortic Dissection: Novel Insights from Bioinformatics Analyses. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6184802. [PMID: 35480868 PMCID: PMC9036163 DOI: 10.1155/2022/6184802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/28/2022] [Accepted: 03/18/2022] [Indexed: 12/21/2022]
Abstract
Background Stanford type A aortic dissection (TAAD) is one of the most life-threatening cardiovascular emergencies with high mortality and morbidity, and necroptosis is a newly identified type of programmed cell death and contributes to the pathogenesis of various cardiovascular diseases. However, the role of necroptosis in TAAD has not been elucidated. This study was aimed at determining the role of necroptosis in TAAD using bioinformatics analyses. Methods The RNA sequencing dataset GSE153434 and the microarray dataset GSE52093 were obtained from Gene Expression Omnibus (GEO) database. Differentially expressed genes of necroptosis (NRDEGs) were identified based on differentially expressed genes (DEGs) and necroptosis gene set. Gene set enrichment analysis (GSEA) was applied to evaluate the gene enrichment signaling pathway in TAAD. The STRING database and Cytoscape software were used to establish and visualize protein-protein interaction (PPI) networks and identify the key functional modules of NRDEGs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of NRDEGs were also performed. Additionally, Spearman correlations were used to construct the necroptosis-related transcription factor-target genes regulatory network, immune infiltration patterns were analyzed using the ImmuCellAI algorithm, and the correlation between immune cell-type abundance and NRDEGs expression was investigated. The expression levels of NRDEGs and immune infiltration were additionally verified in the GSE52093 dataset. Results We found that the necroptosis pathway was considerably enriched and activated in TAAD samples. Overall, 25 NRDEGs were identified including MLKL, RIPK1, and FADD, and among them, 18 were verified in the validation set. Moreover, GO and KEGG enrichment analyses found that NRDEGs were primarily involved in the tumor necrosis factor signaling pathway, nucleotide-binding oligomerization domain-like receptor signaling pathway, and interleukin-17 signaling pathway. The imbalance of Th17/Treg cells was identified in the TAAD samples. Furthermore, correlation analysis indicated that expression of NRDEGs was positively associated with proinflammatory immune-cell infiltrations and negatively associated with anti-inflammatory or regulatory immune-cell infiltrations. Conclusions The present findings suggest that necroptosis phenomenon exists in TAAD and correlates with immune cell infiltration, which indicate necroptosis may promote the development of TAAD through activating immune infiltration and immune response. This study paves a new road to future investigation of the pathogenic mechanisms and therapeutic strategies for TAAD.
Collapse
|
18
|
Chen Y, He Y, Wei X, Jiang DS. Targeting regulated cell death in aortic aneurysm and dissection therapy. Pharmacol Res 2021; 176:106048. [PMID: 34968685 DOI: 10.1016/j.phrs.2021.106048] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/11/2021] [Accepted: 12/23/2021] [Indexed: 02/08/2023]
Abstract
Regulated cell death (RCD) is a basic biological phenomenon associated with cell and tissue homeostasis. Recent studies have enriched our understanding of RCD, and many novel cell death types, such as ferroptosis and pyroptosis, have been discovered and defined. Aortic aneurysm and dissection (AAD) is a life-threatening condition, but the pathogenesis remains largely unclear. A series of studies have indicated that the death of smooth muscle cells, endothelial cells and inflammatory cells participates in the development of AAD and that corresponding interventions could alleviate disease progression. Many treatments against cell death have been used to impede the process of AAD in vitro and in vivo, which provides strategies to protect against this condition. In this review, we focus on various types of regulated cell death and provide a framework of their roles in AAD, and the information contributes to further exploration of the molecular mechanisms of AAD.
Collapse
Affiliation(s)
- Yue Chen
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi He
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| |
Collapse
|