1
|
Hong Z, Wen P, Wang K, Wei X, Xie W, Rao S, Chen X, Hou J, Zhuo H. The macrophage-associated prognostic gene ANXA5 promotes immunotherapy resistance in gastric cancer through angiogenesis. BMC Cancer 2024; 24:141. [PMID: 38287304 PMCID: PMC10823665 DOI: 10.1186/s12885-024-11878-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/13/2024] [Indexed: 01/31/2024] Open
Abstract
Gastric cancer (GC) remains a predominant form of malignant tumor globally, necessitating innovative non-surgical therapeutic approaches. This investigation aimed to delineate the expression landscape of macrophage-associated genes in GC and to evaluate their prognostic significance and influence on immunotherapeutic responsiveness. Utilizing the CellMarker2.0 database, we identified 69 immune cell markers with prognostic relevance in GC, including 12 macrophage-specific genes. A Weighted Gene Co-Expression Network Analysis (WGCNA) isolated 3,181 genes correlated with these macrophage markers. The Cancer Genome Atlas (TCGA-STAD) dataset was employed as the training set, while data from the GSE62254 served as the validation cohort. 13 genes were shortlisted through LASSO-Cox regression to formulate a prognostic model. Multivariable Cox regression substantiated that the calculated risk score serves as an imperative independent predictor of overall survival (OS). Distinct macrophage infiltration profiles, pathway associations, treatment susceptibilities, and drug sensitivities were observed between high- and low-risk groups. The preliminary validation of ANXA5 in predicting the survival rates of GC patients at 1 year, 3 years, and 5 years, as well as its expression levels were higher and role in promoting tumor angiogenesis in GC through immunohistochemistry and angiogenesis experiments. In summary, macrophage-related genes were potentially a novel crosstalk mechanism between macrophages and endothelial cells in the tumor microenvironment, and the interplay between inflammation and angiogenesis might have also offered new therapeutic targets, providing a new avenue for personalized treatment interventions.
Collapse
Affiliation(s)
- Zhijun Hong
- Department of Gastrointestinal Surgery, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, 361004, Xiamen, China
| | - Peizhen Wen
- Department of General Surgery, Changzheng Hospital, Navy Medical University, 415 Fengyang Road, 200003, Shanghai, China
| | - Kang Wang
- Department of Gastrointestinal Surgery, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, 361004, Xiamen, China
| | - Xujin Wei
- The Graduate School, Fujian Medical University, 350004, Fuzhou, China
| | - Wen Xie
- Department of Gastrointestinal Surgery, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, 361004, Xiamen, China
| | - Shihao Rao
- Department of Gastrointestinal Surgery, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, China
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, 361004, Xiamen, China
| | - Xin Chen
- The Graduate School, Fujian Medical University, 350004, Fuzhou, China
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, China.
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, 361004, Xiamen, China.
| | - Huiqin Zhuo
- Department of Gastrointestinal Surgery, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, China.
- Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, 361004, Xiamen, China.
| |
Collapse
|
2
|
Lu X, Hu L, Mao J, Zhang S, Cai Y, Chen W. Annexin A9 promotes cell proliferation by regulating the Wnt signaling pathway in colorectal cancer. Hum Cell 2023; 36:1729-1740. [PMID: 37349657 PMCID: PMC10390359 DOI: 10.1007/s13577-023-00939-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related mortality worldwide. Expression of Annexin A9 (ANXA9), a member of the annexin A family, is upregulated in CRC. However, the molecular role of ANXA9 in CRC remains unknown. In the present study, we aimed to investigate the function of ANXA9 and to elucidate the mechanisms underlying its regulation in CRC. In this study, mRNA expression data and clinical information were downloaded from The Cancer Genome Atlas (TCGA) and GEPIA database, respectively. Kaplan-Meier analysis was used to analyze the survival rates. LinkedOmics and Metascape databases were used to explore the potential mechanisms of regulation of ANXA9 and to identify genes co-expressed with ANXA9. Finally, in vitro experiments were used to evaluate the function of ANXA9 and explore potential mechanisms. We found that ANXA9 expression was significantly elevated in CRC tissue and cells. High ANXA9 expression was associated with shorter overall survival, poorer disease specific survival, as well as with patient age, clinical stage, M stage, and OS events in CRC. Knockdown of ANXA9 inhibited cell proliferation, invasion, migratory potential, and cell cycle arrest. Mechanistically, functional analysis revealed that genes co-expressed with ANXA9 were mainly enriched in the Wnt signaling pathway. ANXA9 deletion suppressed cell proliferation via the Wnt signaling pathway, while Wnt activation reversed the effects of ANXA9. In conclusion, ANXA9 may promote CRC progression by regulating the Wnt signaling pathway and may be a potential diagnostic biomarker in the clinical management of CRC.
Collapse
Affiliation(s)
- Xuemei Lu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, No. 234, Gucui Road, Hangzhou, 310012, Zhejiang, China
| | - Liqiang Hu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, No. 234, Gucui Road, Hangzhou, 310012, Zhejiang, China
| | - Jiayan Mao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, No. 234, Gucui Road, Hangzhou, 310012, Zhejiang, China
| | - Shufen Zhang
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, No. 234, Gucui Road, Hangzhou, 310012, Zhejiang, China
| | - Ying Cai
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, No. 234, Gucui Road, Hangzhou, 310012, Zhejiang, China
| | - Wei Chen
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, No. 234, Gucui Road, Hangzhou, 310012, Zhejiang, China.
| |
Collapse
|
3
|
Liu TT, Yin DT, Wang N, Li N, Dong G, Peng MF. Identifying and analyzing the key genes shared by papillary thyroid carcinoma and Hashimoto's thyroiditis using bioinformatics methods. Front Endocrinol (Lausanne) 2023; 14:1140094. [PMID: 37324256 PMCID: PMC10266228 DOI: 10.3389/fendo.2023.1140094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Background Hashimoto's thyroiditis (HT) is a chronic autoimmune disease that poses a risk factor for papillary thyroid carcinoma (PTC). The present study aimed to identify the key genes shared by HT and PTC for advancing the current understanding of their shared pathogenesis and molecular mechanisms. Methods HT- and PTC-related datasets (GSE138198 and GSE33630, respectively) were retrieved from the Gene Expression Omnibus (GEO) database. Genes significantly related to the PTC phenotype were identified using weighted gene co-expression network analysis (WGCNA). Differentially expressed genes (DEGs) were identified between PTC and healthy samples from GSE33630, and between HT and normal samples from GSE138198. Subsequently, functional enrichment analysis was performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Transcription factors and miRNAs regulating the common genes in PTC and HT were forecasted using the Harmonizome and miRWalk databases, respectively, and drugs targeting these genes were investigated using the Drug-Gene Interaction Database (DGIdb). The key genes in both GSE138198 and GSE33630 were further identified via Receiver Operating Characteristic (ROC) analysis. The expression of key genes was verified in external validation set and clinical samples using quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). Results In total, 690 and 1945 DEGs were associated with PTC and HT, respectively; of these, 56 were shared and exhibited excellent predictive accuracy in the GSE138198 and GSE33630 cohorts. Notably, four genes, Alcohol Dehydrogenase 1B (ADH1B), Active BCR-related (ABR), alpha-1 antitrypsin (SERPINA1), and lysophosphatidic acid receptor 5 (LPAR5) were recognized as key genes shared by HT and PTC. Subsequently, EGR1 was identified as a common transcription factor regulating ABR, SERPINA1, and LPAR5 expression. These findings were confirmed using qRT-PCR and immunohistochemical analysis. Conclusion Four (ADH1B, ABR, SERPINA1, and LPAR5) out of 56 common genes exhibited diagnostic potential in HT and PTC. Notably, this study, for the first time, defined the close relationship between ABR and HT/PTC progression. Overall, this study provides a basis for understanding the shared pathogenesis and underlying molecular mechanisms of HT and PTC, which might help improve patient diagnosis and prognosis.
Collapse
Affiliation(s)
- Ting-ting Liu
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - De-tao Yin
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Research Center of Multidisciplinary Diagnosis and Treatment of Thyroid Cancer of Henan Province, Zhengzhou, China
- Key Medicine Laboratory of Thyroid Cancer of Henan Province, Zhengzhou, China
| | - Nan Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Na Li
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gang Dong
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng-fan Peng
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Cook J, Greene ES, Ramser A, Mullenix G, Dridi JS, Liyanage R, Wideman R, Dridi S. Comparative- and network-based proteomic analysis of bacterial chondronecrosis with osteomyelitis lesions in broiler's proximal tibiae identifies new molecular signatures of lameness. Sci Rep 2023; 13:5947. [PMID: 37045932 PMCID: PMC10097873 DOI: 10.1038/s41598-023-33060-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/06/2023] [Indexed: 04/14/2023] Open
Abstract
Bacterial Chondronecrosis with Osteomyelitis (BCO) is a specific cause of lameness in commercial fast-growing broiler (meat-type) chickens and represents significant economic, health, and wellbeing burdens. However, the molecular mechanisms underlying the pathogenesis remain poorly understood. This study represents the first comprehensive characterization of the proximal tibia proteome from healthy and BCO chickens. Among a total of 547 proteins identified, 222 were differentially expressed (DE) with 158 up- and 64 down-regulated proteins in tibia of BCO vs. normal chickens. Biological function analysis using Ingenuity Pathways showed that the DE proteins were associated with a variety of diseases including cell death, organismal injury, skeletal and muscular disorder, immunological and inflammatory diseases. Canonical pathway and protein-protein interaction network analysis indicated that these DE proteins were involved in stress response, unfolded protein response, ribosomal protein dysfunction, and actin cytoskeleton signaling. Further, we identified proteins involved in bone resorption (osteoclast-stimulating factor 1, OSFT1) and bone structural integrity (collagen alpha-2 (I) chain, COL2A1), as potential key proteins involved in bone attrition. These results provide new insights by identifying key protein candidates involved in BCO and will have significant impact in understanding BCO pathogenesis.
Collapse
Affiliation(s)
- Jennifer Cook
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Elizabeth S Greene
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Alison Ramser
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Garrett Mullenix
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Jalila S Dridi
- École Universitaire de Kinésithérapie, Université d'Orléans, Rue de Chartres, 45100, Orléans, France
| | - Rohana Liyanage
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Robert Wideman
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Sami Dridi
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA.
| |
Collapse
|
5
|
Zheng L, Li L, Wang B, Zhang S, Fu Z, Cheng A, Liang X. Annexin A1 affects tumor metastasis through epithelial-mesenchymal transition: a narrative review. Transl Cancer Res 2022; 11:4416-4433. [PMID: 36644197 PMCID: PMC9834584 DOI: 10.21037/tcr-22-1544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/12/2022] [Indexed: 12/28/2022]
Abstract
Background and Objective Annexin A1 (annexin I, ANXA1), the first discovered member of the annexin superfamily, plays important roles in tumor development, invasion, metastasis, apoptosis and drug resistance based on tumor type-specific patterns of expression. The acquisition of the epithelial-mesenchymal transition (EMT) characteristics is an essential mechanism of metastasis because they increase the mobility and invasiveness of cancer cells. Cancer invasion and metastasis remain major health problems worldwide. Elucidating the role and mechanism of ANXA1 in the occurrence of EMT will help advance the development of novel therapeutic strategies. Hence, this review aims to attract everyone's attention to the important role of ANXA1 in tumors and provide new ideas for clinical tumor treatment. Methods The PubMed database was mainly used to search for various English research papers and reviews related to the role of ANXA1 in tumors and EMT published from November 1994 to April 2022. The search terms used mainly include ANXA1, EMT, tumor, cancer, carcinoma, and mechanism. Key Content and Findings This article mainly provides a summary of the roles of ANXA1 and EMT in tumor metastasis as well as the various mechanisms via which ANXA1 facilitates the occurrence of EMT, thereby affecting tumor metastasis. In addition, the expression of ANXA1 in different metastatic tumor cell lines and its roles in tumorigenesis and development are also elaborated. This article has found many tumorous therapeutic targets related to ANXA1 and EMT, further confirming that ANXA1 has a huge potential for the diagnosis, treatment and prognosis of certain cancers. Conclusions Both the abnormal expression of ANXA1 and the occurrence of EMT are closely related to the invasion and metastasis of tumors, and more interestingly, ANXA1 can impact EMT directly or indirectly by mediating signaling pathways and adhesion among cells. We need more studies to elucidate the effects of ANXA1 on tumor invasion, migration and metastasis through EMT in vitro and in vivo clearly, and ultimately in patients to identify more therapeutic targets.
Collapse
Affiliation(s)
- Lulu Zheng
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Lanxin Li
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Baiqi Wang
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Shanshan Zhang
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhuqiong Fu
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Ailan Cheng
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaoqiu Liang
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
6
|
Hu Y, Chen L, Tang Q, Wei W, Cao Y, Xie J, Ji J. Pan-cancer analysis revealed the significance of the GTPBP family in cancer. Aging (Albany NY) 2022; 14:2558-2573. [PMID: 35320117 PMCID: PMC9004551 DOI: 10.18632/aging.203952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/01/2022] [Indexed: 11/30/2022]
Abstract
Background: At present, cancer is still one of the principal diseases to represent a serious danger to human health. Although research on the pathogenesis and treatment of cancer is progressing rapidly, the current knowledge on this topic is far from sufficient. Some tumors with poor prognoses lack effective prognostic biomarkers. Methods: Firstly, the Wilcoxon test was used to analyse the expression of GTPBP1-GTPBP10 in cancerous and normal tissues. Subsequently, we explored the expression of GTPBP1-10 in cancer by way of a paired t-test and plotted the survival curve using KM and univariate Cox regression analysis to explore the relationship between GTPBP1-10 and the prognosis of cancer. We then explored the significance of the GTPBP family in the tumor microenvironment. Results: The results showed that many members of the GTPBP family are differentially expressed in a variety of cancers and alter the prognosis of a number of cancers. Members of the GTPBP family may serve as novel prognostic markers for these tumors. Moreover, members of the GTPBP family are correlated with the immune microenvironment of tumors, which is valuable in terms of adding to our understanding of the mechanisms of tumor genesis. Finally, we identified drugs showing a high correlation with GTPBP family members, which are therefore conducive to the development of GTPBP family member-based treatment regimens. Conclusions: The 10 members of the GTPBP family have prognostic value in multiple tumor types and are associated with the immune microenvironment. Our study may provide a reference for the diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Yiming Hu
- College of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Liang Chen
- Department of General Surgery, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, Anhui, China
| | - Qikai Tang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Wei
- Department of General Surgery, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, Anhui, China
| | - Yuan Cao
- Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiaheng Xie
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Ji
- College of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| |
Collapse
|
7
|
Yu XT, Wang F, Ding JT, Cai B, Xing JJ, Guo GH, Guo F. Tandem mass tag-based serum proteomic profiling revealed diabetic foot ulcer pathogenesis and potential therapeutic targets. Bioengineered 2022; 13:3171-3182. [PMID: 35068329 PMCID: PMC8974021 DOI: 10.1080/21655979.2022.2027173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Diabetic foot ulcer (DFU), one of the most serious complications of diabetes mellitus, is associated with a high amputation rate and decreased life quality. The impact of blood serum proteins on the occurrence and development of DFU has attracted a lot of interest. In this study, we aimed to define and compare the serum proteome of patients with DFU and healthy control (HC) to provide new insights into DFU pathogenesis. DFU patients and age- and sex-matched HCs were enrolled in this study (n = 54). We screened alterations in blood serum proteins from DFU patients and HC using a tandem mass tag (TMT) method based on liquid chromatography-mass spectrometry (LC-MS/MS) quantitative proteomics, and the differentially expressed proteins (DEPs) were further validated by parallel reaction monitoring (PRM) and enzyme-linked immunosorbent assay (ELISA). A total of 173 DEPs (100 up-regulated and 73 down-regulated) were identified between the DFU and HC groups (P < 0.05). Proteomic and bioinformatics analyses indicated that the proteins in the DFU group were mainly related to extracellular matrix (ECM)-receptor interaction and complement and coagulation cascades. The up-regulated DEPs were further verified by PRM and ELISA. LRG1, CD5L, CRP, IGHA1, and LBP were proved upregulated in DFU and these proteins are mainly related to immune response and complement activation. Our findings help to provide a more comprehensive understanding of the pathogenesis of DFU and new insight into potential therapeutic targets.
Collapse
Affiliation(s)
- Xiao-Ting Yu
- Burns Institute, the First Affiliated Hospital of Nanchang University, NanChang, JiangXi, China
| | - Feng Wang
- Ningbo Institute for Medicine & Biomedical Engineering Combined Innovation, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Jia-Tong Ding
- Burns Institute, the First Affiliated Hospital of Nanchang University, NanChang, JiangXi, China
| | - Bo Cai
- Burns Institute, the First Affiliated Hospital of Nanchang University, NanChang, JiangXi, China
| | - Juan-Juan Xing
- Burns Institute, the First Affiliated Hospital of Nanchang University, NanChang, JiangXi, China
| | - Guang-Hua Guo
- Burns Institute, the First Affiliated Hospital of Nanchang University, NanChang, JiangXi, China
| | - Fei Guo
- Burns Institute, the First Affiliated Hospital of Nanchang University, NanChang, JiangXi, China
- Ningbo Institute for Medicine & Biomedical Engineering Combined Innovation, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
8
|
Wang J, Wang J, Quan J, Liu J, Tian L, Dong C. Relationship between serum NDRG3 and papillary thyroid carcinoma. Front Endocrinol (Lausanne) 2022; 13:1091462. [PMID: 36619553 PMCID: PMC9811643 DOI: 10.3389/fendo.2022.1091462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In recent years, papillary thyroid carcinoma is considered to be one of the fastest increaseing cancer. NDRG family member 3 (NDRG3) has been proposed as a molecular marker of tumor, and is expected to be used in clinic. METHODS Enzyme-linked immunosorbent assay was used to detect the serum NDRG3 expression in 81 papillary thyroid carcinoma cases, 75 benign thyroid nodules cases and 77 healthy control cases, respectively. Electrochemiluminescence method was applied to measure the levels of triiodothyronine, tetraiodothyronine, thyrotropin, thyroglobulin antibody and thyroid peroxidase antibody. Immunohistochemical staining was used to detect the expression of NDRG3 in papillary thyroid carcinoma, benign thyroid nodules and normal tissues adjacent to cancer. RESULTS The expression of serum triiodothyronine, tetraiodothyronine, thyrotropin, thyroglobulin antibody and thyroid peroxidase antibody and NDRG3 were significantly different among benign thyroid nodules, papillary thyroid carcinoma cases and healthy control groups (P <0.001). Only the expression of serum NDRG3 was significantly different between benign thyroid nodules and papillary thyroid carcinoma groups (P <0.001). Immunohistochemistry showed that NDRG3 was expressed in all three groups, the lowest in papillary thyroid carcinoma, the second in benign thyroid nodules, and the highest in normal tissues adjacent to cancer. Logistic regression analysis showed that serum NDRG3 was an independent protective factor for papillary thyroid carcinoma (OR =0.964, 95%CI =0.953 to 0.974, P <0.001). The ROC curve of non-papillary thyroid carcinoma diagnosed by serum NDRG3 showed the optimal cut-off value of 481.38 pg/ml, sensitivity of 72.4%, specificity of 90.1%, and the maximum area under the curve (AUC =0.902, 95%CI =0.863 to 0.940, P <0.001). The ROC curve of benign thyroid nodules diagnosed by serum NDRG3 showed the optimal critical value of 459.28 pg/ml, sensitivity of 81.3%, and specificity of 74.1% (AUC =0.863, 95%CI =0.808 to 0.919, P <0.001). The expression level of serum NDRG3 was significantly correlated with extrathyroid extensionand (P =0.007) and lymphatic metastasis of papillary thyroid carcinoma (P =0.019). CONCLUSIONS The decrease of NDRG3 expression can not only differential diagnosis benign thyroid nodules and papillary thyroid carcinoma, but also serve as a molecular marker for the diagnosis of papillary thyroid carcinoma.
Collapse
Affiliation(s)
- Jiahao Wang
- The First Clinical College of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jun Wang
- Department of Thyroid and Breast Surgery, Gansu Cancer Hospital, Lanzhou, Gansu, China
| | - Jinxing Quan
- Department of Endocrinology in Gansu Provincial People’s Hospital and The First Clinical College of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- *Correspondence: Jinxing Quan,
| | - Juxiang Liu
- Department of Endocrinology in Gansu Provincial People’s Hospital and The First Clinical College of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Limin Tian
- Department of Endocrinology in Gansu Provincial People’s Hospital and The First Clinical College of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Changhong Dong
- Radiotherapy Department of Gansu Maternal and Child Health Hospital, Lanzhou, Gansu, China
| |
Collapse
|