1
|
Díaz CR, Hernández-Huerta MT, Mayoral LPC, Villegas MEA, Zenteno E, Cruz MM, Mayoral EPC, Del Socorro Pina Canseco M, Andrade GM, Castellanos MÁ, Matías Salvador JM, Cruz Parada E, Martínez Barras A, Cruz Fernández JN, Scott-Algara D, Pérez-Campos E. Non-Coding RNAs and Innate Immune Responses in Cancer. Biomedicines 2024; 12:2072. [PMID: 39335585 PMCID: PMC11429077 DOI: 10.3390/biomedicines12092072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Non-coding RNAs (ncRNAs) and the innate immune system are closely related, acting as defense mechanisms and regulating gene expression and innate immunity. Both are modulators in the initiation, development and progression of cancer. We aimed to review the major types of ncRNAs, including small interfering RNAs (siRNAs), microRNAs (miRNAs), piwi-interacting RNAs (piRNAs), and long non-coding RNAs (lncRNAs), with a focus on cancer, innate immunity, and inflammation. We found that ncRNAs are closely related to innate immunity, epigenetics, chronic inflammation, and cancer and share properties such as inducibility, specificity, memory, and transfer. These similarities and interrelationships suggest that ncRNAs and modulators of trained immunity, together with the control of chronic inflammation, can be combined to develop novel therapeutic approaches for personalized cancer treatment. In conclusion, the close relationship between ncRNAs, the innate immune system, and inflammation highlights their importance in cancer pathways and their potential as targets for novel therapeutic strategies.
Collapse
Affiliation(s)
| | - María Teresa Hernández-Huerta
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCyT), Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca (UABJO), Oaxaca 68020, Mexico
| | - Laura Pérez-Campos Mayoral
- Centro de Investigación, Facultad de Medicina UNAM-UABJO, Universidad Autónoma "Benito Juárez" de Oaxaca (UABJO), Oaxaca 68020, Mexico
| | | | - Edgar Zenteno
- Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Ciudad de México 04510, Mexico
| | | | - Eduardo Pérez-Campos Mayoral
- Centro de Investigación, Facultad de Medicina UNAM-UABJO, Universidad Autónoma "Benito Juárez" de Oaxaca (UABJO), Oaxaca 68020, Mexico
| | - María Del Socorro Pina Canseco
- Centro de Investigación, Facultad de Medicina UNAM-UABJO, Universidad Autónoma "Benito Juárez" de Oaxaca (UABJO), Oaxaca 68020, Mexico
| | - Gabriel Mayoral Andrade
- Centro de Investigación, Facultad de Medicina UNAM-UABJO, Universidad Autónoma "Benito Juárez" de Oaxaca (UABJO), Oaxaca 68020, Mexico
| | | | | | - Eli Cruz Parada
- Tecnológico Nacional de México/IT Oaxaca, Oaxaca 68030, Mexico
| | | | - Jaydi Nora Cruz Fernández
- Centro de Investigación, Facultad de Medicina UNAM-UABJO, Universidad Autónoma "Benito Juárez" de Oaxaca (UABJO), Oaxaca 68020, Mexico
| | - Daniel Scott-Algara
- Unité de Biologie Cellulaire des Lymphocytes and Direction of International Affairs, Institut Pasteur, 75015 Paris, France
| | - Eduardo Pérez-Campos
- Tecnológico Nacional de México/IT Oaxaca, Oaxaca 68030, Mexico
- Laboratorio de Patología Clínica "Dr. Eduardo Pérez Ortega", Oaxaca 68000, Mexico
| |
Collapse
|
2
|
Taghizadeh M, Jafari-Koshki T, Jafarlou V, Raeisi M, Alizadeh L, Roosta Y, Matin S, Jabari R, Sur D, Karimi A. The role of piRNAs in predicting and prognosing in cancer: a focus on piRNA-823 (a systematic review and meta-analysis). BMC Cancer 2024; 24:484. [PMID: 38627675 PMCID: PMC11022431 DOI: 10.1186/s12885-024-12180-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
INTRODUCTION This article examines the potential of using liquid biopsy with piRNAs to study cancer survival outcomes. While previous studies have explored the relationship between piRNA expression and cancer patient outcomes, a comprehensive investigation is still lacking. To address this gap, we conducted a systematic review and meta-analysis of existing literature. METHODS We searched major online databases up to February 2024 to identify articles reporting on the role of piRNA in cancer patient survival outcomes. Our meta-analysis used a random-effects model to pool hazard ratios with 95% confidence intervals (CI) and assess the prognostic value of deregulated piRNA-823. For survival analysis, the Kaplan-Meier method and COX analysis were used. RESULTS Out of 6104 articles screened, 20 met our inclusion criteria. Our analysis revealed that dysregulated piRNA expression is associated with cancer patient survival outcomes. Specifically, our meta-analysis found that overexpression of piR-823 is significantly linked with poorer overall survival in patients with colorectal cancer and renal cell cancer (HR: 3.82, 95% CI = [1.81, 8.04], I2 = 70%). CONCLUSION Our findings suggest that various piRNAs may play a role in cancer survival outcomes and that piRNA-823 in particular holds promise as a prognostic biomarker for multiple human cancers. IMPLICATIONS FOR CANCER SURVIVORS Our systematic review and meta-analysis of piRNA-823 has important implications for cancer survivors. Our findings suggest that piRNA-823 can be used as a prognostic biomarker for predicting cancer recurrence and survival rates. This information can help clinicians develop personalized treatment plans for cancer survivors, which can improve their quality of life and reduce the risk of recurrence.
Collapse
Affiliation(s)
- Mohammad Taghizadeh
- Department of Molecular Medicine, Faculty of Advanced Medical School, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran
| | - Tohid Jafari-Koshki
- Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| | - Vahid Jafarlou
- Cancer Institute of Imam Khomeini Hospital, Tehran University of Medical Science, Tehran, 1419733141, Iran
| | - Mortaza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| | - Leila Alizadeh
- Gastroenterology and Liver Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 5166616471, Iran
| | - Yousef Roosta
- Department of Internal Medicine, School of Medicine, Urmia University of Medical Sciences, Urmia, 5714783734, Iran
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, 5714783734, Iran
- Hematology, Immune Cell Therapy, and Stem Cells Transplantation Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, 5714783734, Iran
| | - Somaieh Matin
- Department of Internal Medicine, School of Medicine, Ardabil University of Medical Sciences, Ardabil, 8599156189, Iran
| | - Rahele Jabari
- Department of Nutrition Science, Faculty of Medical Science, Urmia University of Medical Science, Urmia, 5714783734, Iran
| | - Daniel Sur
- Department of Oncology, The Oncology Institute "Prof. Dr. Ion Chiricu¸tă", Cluj-Napoca, 400015, Romania.
- Department of Medical Oncology, The Oncology Institute "Prof. Dr. Ion Chiricu ̧t ̆a", 400015 Str. Republicii 34-36, Cluj-Napoca, 400006, Romania.
| | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical School, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran.
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht St., Tabriz, East Azerbaijan, 5166614756, Iran.
| |
Collapse
|
3
|
Sohn EJ, Han ME, Park YM, Kim YH, Oh SO. The potential of piR-823 as a diagnostic biomarker in oncology: A systematic review. PLoS One 2023; 18:e0294685. [PMID: 38060527 PMCID: PMC10703285 DOI: 10.1371/journal.pone.0294685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Emerging evidence has demonstrated that PIWI-interacting RNAs (piRNAs) play important roles in various physiological processes and contribute to cancer progression. Moreover, piRNAs and PIWI protein levels are associated with the prognosis and chemoresistance of various cancers. The limitations of biomarkers challenge early detection and monitoring of chemoresistance and cancer relapse. METHODS To evaluate the potential of piRNA as a diagnostic biomarker in oncology, we systematically reviewed previous studies on the subject. PubMed, Embase, and Cochrane databases were searched to evaluate the diagnostic relevance of piRNAs in cancer. Eighteen studies (2,352 patients) were included. The quality of each study was evaluated with AMSTAR and QUADAS-2 tool. RESULTS & CONCLUSIONS The area under the curve (AUC) values of 26 piRNAs in patients with cancer ranged from 0.624 to 0.978, with piR-9491 showing the highest value (0.978). The sensitivity of the total of 21 piRNAs in cancer patients was between 42.86 and 100, with piR-9491 showing the highest sensitivity (100). The specificity of these 21 piRNAs ranged from 60.10 to 96.67 (with piR-018569 showing the highest specificity (96.67)). Their odds ratios were between 1.61 and 44.67, and piR-12488 showed the highest odds ratio (44.67). Generally, the piRNAs in this review showed better sensitivity and AUC values than current clinical diagnostic biomarkers, although current biomarkers appear to be more specific. Reviewed piRNAs showed better diagnostic performance than currently used clinical biomarkers. Notably, piR-823 showed a significant diagnostic performance in four types of cancer (colorectal, esophageal, gastric, and renal cell cancer). However, all 18 studies included in this review were a case-control study. So, further prospective studies are required for their validation.
Collapse
Affiliation(s)
- Eun Jung Sohn
- Research Center for Molecular Control of Cancer Cell Diversity, Pusan National University, Yangsan, Republic of Korea
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Myoung-Eun Han
- Research Center for Molecular Control of Cancer Cell Diversity, Pusan National University, Yangsan, Republic of Korea
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Young Mok Park
- Department of Surgery, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Sae-Ock Oh
- Research Center for Molecular Control of Cancer Cell Diversity, Pusan National University, Yangsan, Republic of Korea
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
4
|
Wu Z, Yu X, Zhang S, He Y, Guo W. Novel roles of PIWI proteins and PIWI-interacting RNAs in human health and diseases. Cell Commun Signal 2023; 21:343. [PMID: 38031146 PMCID: PMC10685540 DOI: 10.1186/s12964-023-01368-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Non-coding RNA has aroused great research interest recently, they play a wide range of biological functions, such as regulating cell cycle, cell proliferation, and intracellular substance metabolism. Piwi-interacting RNAs (piRNAs) are emerging small non-coding RNAs that are 24-31 nucleotides in length. Previous studies on piRNAs were mainly limited to evaluating the binding to the PIWI protein family to play the biological role. However, recent studies have shed more lights on piRNA functions; aberrant piRNAs play unique roles in many human diseases, including diverse lethal cancers. Therefore, understanding the mechanism of piRNAs expression and the specific functional roles of piRNAs in human diseases is crucial for developing its clinical applications. Presently, research on piRNAs mainly focuses on their cancer-specific functions but lacks investigation of their expressions and epigenetic modifications. This review discusses piRNA's biogenesis and functional roles and the recent progress of functions of piRNA/PIWI protein complexes in human diseases. Video Abstract.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| |
Collapse
|
5
|
Olufunmilayo EO, Holsinger RMD. Roles of Non-Coding RNA in Alzheimer's Disease Pathophysiology. Int J Mol Sci 2023; 24:12498. [PMID: 37569871 PMCID: PMC10420049 DOI: 10.3390/ijms241512498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder that is accompanied by deficits in memory and cognitive functions. The disease is pathologically characterised by the accumulation and aggregation of an extracellular peptide referred to as amyloid-β (Aβ) in the form of amyloid plaques and the intracellular aggregation of a hyperphosphorelated protein tau in the form of neurofibrillary tangles (NFTs) that cause neuroinflammation, synaptic dysfunction, and oxidative stress. The search for pathomechanisms leading to disease onset and progression has identified many key players that include genetic, epigenetic, behavioural, and environmental factors, which lend support to the fact that this is a multi-faceted disease where failure in various systems contributes to disease onset and progression. Although the vast majority of individuals present with the sporadic (non-genetic) form of the disease, dysfunctions in numerous protein-coding and non-coding genes have been implicated in mechanisms contributing to the disease. Recent studies have provided strong evidence for the association of non-coding RNAs (ncRNAs) with AD. In this review, we highlight the current findings on changes observed in circular RNA (circRNA), microRNA (miRNA), short interfering RNA (siRNA), piwi-interacting RNA (piRNA), and long non-coding RNA (lncRNA) in AD. Variations in these ncRNAs could potentially serve as biomarkers or therapeutic targets for the diagnosis and treatment of Alzheimer's disease. We also discuss the results of studies that have targeted these ncRNAs in cellular and animal models of AD with a view for translating these findings into therapies for Alzheimer's disease.
Collapse
Affiliation(s)
- Edward O. Olufunmilayo
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Department of Medicine, University College Hospital, Queen Elizabeth Road, Oritamefa, Ibadan 200212, Nigeria
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Taverna S, Masucci A, Cammarata G. PIWI-RNAs Small Noncoding RNAs with Smart Functions: Potential Theranostic Applications in Cancer. Cancers (Basel) 2023; 15:3912. [PMID: 37568728 PMCID: PMC10417041 DOI: 10.3390/cancers15153912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) are a new class of small noncoding RNAs (ncRNAs) that bind components of the PIWI protein family. piRNAs are specifically expressed in different human tissues and regulate important signaling pathways. Aberrant expressions of piRNAs and PIWI proteins have been associated with tumorigenesis and cancer progression. Recent studies reported that piRNAs are contained in extracellular vesicles (EVs), nanosized lipid particles, with key roles in cell-cell communication. EVs contain several bioactive molecules, such as proteins, lipids, and nucleic acids, including emerging ncRNAs. EVs are one of the components of liquid biopsy (LB) a non-invasive method for detecting specific molecular biomarkers in liquid samples. LB could become a crucial tool for cancer diagnosis with piRNAs as biomarkers in a precision oncology approach. This review summarizes the current findings on the roles of piRNAs in different cancer types, focusing on potential theranostic applications of piRNAs contained in EVs (EV-piRNAs). Their roles as non-invasive diagnostic and prognostic biomarkers and as new therapeutic options have been also discussed.
Collapse
Affiliation(s)
- Simona Taverna
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy
| | - Anna Masucci
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, Laboratory Medicine, University of Palermo, 90127 Palermo, Italy;
| | - Giuseppe Cammarata
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy
| |
Collapse
|
7
|
Uppaluri KR, Challa HJ, Gaur A, Jain R, Krishna Vardhani K, Geddam A, Natya K, Aswini K, Palasamudram K, K SM. Unlocking the potential of non-coding RNAs in cancer research and therapy. Transl Oncol 2023; 35:101730. [PMID: 37406550 PMCID: PMC10366642 DOI: 10.1016/j.tranon.2023.101730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/30/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023] Open
Abstract
Non-coding RNAs (ncRNAs) have emerged as key regulators of gene expression, with growing evidence implicating their involvement in cancer development and progression. The potential of ncRNAs as diagnostic and prognostic biomarkers for cancer is promising, with emphasis on their use in liquid biopsy and tissue-based diagnostics. In a nutshell, the review comprehensively summarizes the diverse classes of ncRNAs implicated in cancer, including microRNAs, long non-coding RNAs, and circular RNAs, and their functions and mechanisms of action. Furthermore, we describe the potential therapeutic applications of ncRNAs, including anti-miRNA oligonucleotides, siRNAs, and other RNA-based therapeutics in cancer treatment. However, significant challenges remain in developing effective ncRNA-based diagnostics and therapeutics, including the lack of specificity, limited understanding of mechanisms, and delivery challenges. This review also covers the current state-of-the-art non-coding RNA research technologies and bioinformatic analysis tools. Lastly, we outline future research directions in non-coding RNA research in cancer, including developing novel biomarkers, therapeutic targets, and modalities. In summary, this review provides a comprehensive understanding of non-coding RNAs in cancer and their potential clinical applications, highlighting both the opportunities and challenges in this rapidly evolving field.
Collapse
Affiliation(s)
- Kalyan Ram Uppaluri
- GenepoweRx, Uppaluri K&H Personalized Medicine Clinic, Suit #2B, Plot No. 240, Nirvana, Road No. 36, Jawahar Colony, Jubilee Hills, Hyderabad, Telangana 500033, India.
| | - Hima J Challa
- GenepoweRx, Uppaluri K&H Personalized Medicine Clinic, Suit #2B, Plot No. 240, Nirvana, Road No. 36, Jawahar Colony, Jubilee Hills, Hyderabad, Telangana 500033, India
| | - Ashish Gaur
- Department of Biotechnology, GLA University, Mathura, India
| | - Rajul Jain
- Dayalbagh Educational Institute, Agra, India
| | - K Krishna Vardhani
- GenepoweRx, Uppaluri K&H Personalized Medicine Clinic, Suit #2B, Plot No. 240, Nirvana, Road No. 36, Jawahar Colony, Jubilee Hills, Hyderabad, Telangana 500033, India
| | - Anusha Geddam
- GenepoweRx, Uppaluri K&H Personalized Medicine Clinic, Suit #2B, Plot No. 240, Nirvana, Road No. 36, Jawahar Colony, Jubilee Hills, Hyderabad, Telangana 500033, India
| | - K Natya
- GenepoweRx, Uppaluri K&H Personalized Medicine Clinic, Suit #2B, Plot No. 240, Nirvana, Road No. 36, Jawahar Colony, Jubilee Hills, Hyderabad, Telangana 500033, India
| | - K Aswini
- GenepoweRx, Uppaluri K&H Personalized Medicine Clinic, Suit #2B, Plot No. 240, Nirvana, Road No. 36, Jawahar Colony, Jubilee Hills, Hyderabad, Telangana 500033, India
| | - Kalyani Palasamudram
- GenepoweRx, Uppaluri K&H Personalized Medicine Clinic, Suit #2B, Plot No. 240, Nirvana, Road No. 36, Jawahar Colony, Jubilee Hills, Hyderabad, Telangana 500033, India
| | - Sri Manjari K
- GenepoweRx, Uppaluri K&H Personalized Medicine Clinic, Suit #2B, Plot No. 240, Nirvana, Road No. 36, Jawahar Colony, Jubilee Hills, Hyderabad, Telangana 500033, India.
| |
Collapse
|
8
|
Zhou J, Xie H, Liu J, Huang R, Xiang Y, Tian D, Bian E. PIWI-interacting RNAs: Critical roles and therapeutic targets in cancer. Cancer Lett 2023; 562:216189. [PMID: 37076042 DOI: 10.1016/j.canlet.2023.216189] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) are a novel class of small regulatory RNAs (approximately 24-31 nucleotides in length) that often bind to members of the PIWI protein family. piRNAs regulate transposons in animal germ cells; piRNAs are also specifically expressed in many human tissues and regulate pivotal signaling pathways. Additionally, the abnormal expression of piRNAs and PIWI proteins has been associated with various malignant tumours, and multiple mechanisms of piRNA-mediated target gene dysregulation are involved in tumourigenesis and progression, suggesting that they have the potential to serve as new biomarkers and therapeutic targets for tumours. However, the functions and potential mechanisms of action of piRNAs in cancer have not yet been elucidated. This review summarises the current findings on the biogenesis, function, and mechanisms of piRNAs and PIWI proteins in cancer. We also discuss the clinical significance of piRNAs as diagnostic or prognostic biomarkers and therapeutic tools for cancer. Finally, we present some critical questions regarding piRNA research that need to be addressed to provide insight into the future development of the field.
Collapse
Affiliation(s)
- Jialin Zhou
- Department of Clinical Medicine, The Second School of Clinical Medical, Anhui Medical University, Hefei, China
| | - Han Xie
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - Ruixiang Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - Yufei Xiang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - Dasheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China.
| | - Erbao Bian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui Province, 230601, China; Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
9
|
Ghavami S, Zamani M, Ahmadi M, Erfani M, Dastghaib S, Darbandi M, Darbandi S, Vakili O, Siri M, Grabarek BO, Boroń D, Zarghooni M, Wiechec E, Mokarram P. Epigenetic regulation of autophagy in gastrointestinal cancers. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166512. [PMID: 35931405 DOI: 10.1016/j.bbadis.2022.166512] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 11/09/2022]
Abstract
The development of novel therapeutic approaches is necessary to manage gastrointestinal cancers (GICs). Considering the effective molecular mechanisms involved in tumor growth, the therapeutic response is pivotal in this process. Autophagy is a highly conserved catabolic process that acts as a double-edged sword in tumorigenesis and tumor inhibition in a context-dependent manner. Depending on the stage of malignancy and cellular origin of the tumor, autophagy might result in cancer cell survival or death during the GICs' progression. Moreover, autophagy can prevent the progression of GIC in the early stages but leads to chemoresistance in advanced stages. Therefore, targeting specific arms of autophagy could be a promising strategy in the prevention of chemoresistance and treatment of GIC. It has been revealed that autophagy is a cytoplasmic event that is subject to transcriptional and epigenetic regulation inside the nucleus. The effect of epigenetic regulation (including DNA methylation, histone modification, and expression of non-coding RNAs (ncRNAs) in cellular fate is still not completely understood. Recent findings have indicated that epigenetic alterations can modify several genes and modulators, eventually leading to inhibition or promotion of autophagy in different cancer stages, and mediating chemoresistance or chemosensitivity. The current review focuses on the links between autophagy and epigenetics in GICs and discusses: 1) How autophagy and epigenetics are linked in GICs, by considering different epigenetic mechanisms; 2) how epigenetics may be involved in the alteration of cancer-related phenotypes, including cell proliferation, invasion, and migration; and 3) how epidrugs modulate autophagy in GICs to overcome chemoresistance.
Collapse
Affiliation(s)
- Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Research Institute of Hematology and Oncology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland.
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mehran Erfani
- Department of Biochemistry, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran; Gene Therapy and Regenerative Medicine Research Center, Hope Generation Foundation, Tehran, Iran
| | - Sara Darbandi
- Fetal Health Research Center, Hope Generation Foundation, Tehran, Iran; Gene Therapy and Regenerative Medicine Research Center, Hope Generation Foundation, Tehran, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Morvarid Siri
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Beniamin Oskar Grabarek
- Department of Histology, Cytophysiology, and Embryology in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland; Department of Gynecology and Obstetrics in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Dariusz Boroń
- Department of Histology, Cytophysiology, and Embryology in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland; Department of Gynecology and Obstetrics in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Maryam Zarghooni
- Department of Laboratory Medicine and Pathobiology, University of Toronto Alumni, Toronto, Canada
| | - Emilia Wiechec
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
10
|
Martinez-Arroyo O, Ortega A, Forner MJ, Cortes R. Mesenchymal Stem Cell-Derived Extracellular Vesicles as Non-Coding RNA Therapeutic Vehicles in Autoimmune Diseases. Pharmaceutics 2022; 14:pharmaceutics14040733. [PMID: 35456567 PMCID: PMC9028692 DOI: 10.3390/pharmaceutics14040733] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/17/2022] [Accepted: 03/26/2022] [Indexed: 02/07/2023] Open
Abstract
Autoimmune diseases (ADs) are characterized by the activation of the immune system against self-antigens. More common in women than in men and with an early onset, their incidence is increasing worldwide, and this, combined with their chronic nature, is contributing to an enlarged medical and economic burden. Conventional immunosuppressive agents are designed to alleviate symptoms but do not constitute an effective therapy, highlighting a need to develop new alternatives. In this regard, mesenchymal stem cells (MSCs) have demonstrated powerful immunosuppressive and regenerative effects. MSC-derived extracellular vesicles (MSC-EVs) have shown some advantages, such as less immunogenicity, and are proposed as novel therapies for ADs. In this review, we summarize current perspectives on therapeutic options for ADs based on MSCs and MSC-EVs, focusing particularly on their mechanism of action exerted through their non-coding RNA (ncRNA) cargo. A complete state-of-the-art review was performed, centralized on some of the most severe ADs (rheumatoid arthritis, autoimmune type 1 diabetes mellitus, and systemic lupus erythematosus), giving evidence that a promising field is evolving to overcome the current knowledge and provide new therapeutic possibilities centered on MSC-EVs and their role as ncRNA delivery vehicles for AD gene therapy.
Collapse
Affiliation(s)
- Olga Martinez-Arroyo
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (O.M.-A.); (M.J.F.)
| | - Ana Ortega
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (O.M.-A.); (M.J.F.)
- Correspondence: (A.O.); (R.C.); Tel.: +34-96398-3916 (R.C.); Fax: +34-96398-7860 (R.C.)
| | - Maria J. Forner
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (O.M.-A.); (M.J.F.)
- Internal Medicine Unit, Hospital Clinico Universitario, 46010 Valencia, Spain
| | - Raquel Cortes
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (O.M.-A.); (M.J.F.)
- Correspondence: (A.O.); (R.C.); Tel.: +34-96398-3916 (R.C.); Fax: +34-96398-7860 (R.C.)
| |
Collapse
|
11
|
Ates B, Öner Ç, Akbulut Z, Çolak E. Capsaicin Alters the Expression of Genetic and Epigenetic Molecules In Hepatocellular Carcinoma Cell. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2022; 11:236-243. [PMID: 37605741 PMCID: PMC10440001 DOI: 10.22088/ijmcm.bums.11.3.236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/15/2023] [Accepted: 05/23/2023] [Indexed: 08/23/2023]
Abstract
Capsaicin is a natural product which is extracted from pepper and has the potential to be used in cancer treatment because of its anti- proliferative effects. The aim of the study was to determine the effect of capsaicin on the hepatocellular carcinoma cell proliferation and the expressions of related genetic markers as Ki-67, PI3K/AKT/mTOR and epigenetic markers as miR-126 and piR-Hep-1. The inhibitory concentration of capsaicin in HepG2 cells was determined. piR-Hep-1 and miR-126 expressions and Ki-67, PI3K, AKT and mTOR gene expressions were examined by RT-PCR. The inhibitory concentration of capsaicin for HepG2 cells was 200 nM and the decreased proliferation was observed at 24th hour. As epigenetic markers, an up regulation of miR-126 and down regulation of piR-Hep-1 expression were determined after treatment. Moreover, Ki-67, PI3K and mTOR gene expressions decreased while AKT gene expression increased after the treatment (p<0.001). According to the obtained data, capsaicin has an impact on proliferation both genetically and epigenetically. Furthermore, treatment of capsaicin effects miR-126 and piR-Hep-1 expressions which effect carcinogenesis in different way. Moreover, there are some clues which indicate that these two small non-coding RNA might affect each other and share the same target molecules post-transcriptionally.
Collapse
Affiliation(s)
- Beren Ates
- Maltepe University, School of Medicine, İstanbul, Turkey.
| | - Çağrı Öner
- Maltepe University, Medical Faculty, Department of Medical Biology and Genetics, İstanbul, Turkey.
| | - Zeynep Akbulut
- Maltepe University, Medical Faculty, Department of Medical Biology and Genetics, İstanbul, Turkey.
| | - Ertuğrul Çolak
- Eskişehir Osmangazi University, Medical Faculty, Department of Biostatistics, Eskişehir, Turkey.
| |
Collapse
|