1
|
Li X, Jiao K, Liu C, Li X, Wang S, Tao Y, Cheng Y, Zhou X, Wei X, Li M. Bibliometric analysis of the inflammation expression after spinal cord injury: current research status and emerging frontiers. Spinal Cord 2024; 62:609-618. [PMID: 39363043 PMCID: PMC11549042 DOI: 10.1038/s41393-024-01038-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
STUDY DESIGN Bibliometric analysis. OBJECTIVE To analyze literature on inflammatory expression following spinal cord injury, highlighting development trends, current research status, and potential emerging frontiers. SETTING Not applicable. METHODS Articles were retrieved using terms related to spinal cord injury and inflammatory responses from the Web of Science Core Collection, covering January 1, 1980, to May 23, 2024. Tools like CiteSpace and VOSviewer assessed the research landscape, evaluating core authors, journals, and contributing countries. Keyword co-occurrence analyses identified research trends. RESULTS A total of 2504 articles were retrieved, showing a consistent increase in publications. The Journal of Neurotrauma had the highest publication volume and influence. The most prolific author was Cuzzocrea S, with Popovich PG having the highest H-index. China led in the number of publications, followed closely by the United States, which had the highest impact and extensive international collaboration. Research mainly focused on nerve function recovery, glial scar formation, and oxidative stress. Future research is expected to investigate cellular autophagy, vesicular transport, and related signaling pathways. CONCLUSION The growing interest in inflammation caused by spinal cord injury is evident, with current research focusing on oxidative stress, glial scar, and neurological recovery. Future directions include exploring autophagy and extracellular vesicles for new therapies. Interdisciplinary research and extensive clinical trials are essential for validating new treatments. Biomarker discovery is crucial for diagnosis and monitoring, while understanding autophagy and signaling pathways is vital for drug development. Global cooperation is needed to accelerate the application of scientific findings, improving spinal cord injury treatment.
Collapse
Affiliation(s)
- Xiaoyu Li
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
| | - Kun Jiao
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
| | - Chen Liu
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
| | - Xiongfei Li
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
| | - Shanhe Wang
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
| | - Ye Tao
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
| | - Yajun Cheng
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
| | - Xiaoyi Zhou
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China.
| | - Xianzhao Wei
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China.
| | - Ming Li
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China.
| |
Collapse
|
2
|
Chen M, Lin Y, Guo W, Chen L. BMSC-Derived Exosomes Carrying miR-26a-5p Ameliorate Spinal Cord Injury via Negatively Regulating EZH2 and Activating the BDNF-TrkB-CREB Signaling. Mol Neurobiol 2024; 61:8156-8174. [PMID: 38478142 DOI: 10.1007/s12035-024-04082-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/28/2024] [Indexed: 09/21/2024]
Abstract
BACKGROUND Spinal cord injury (SCI) is a destructive neurological and pathological state that causes major motor, sensory and autonomic dysfunctions. Bone marrow mesenchymal stem cells (BMSCs)-derived exosomes show great therapeutic potential for SCI. Exosomes derived from miR-26a-modified MSCs promote axonal regeneration following SCI. Our study aims to uncover the mechanisms by which BMSC-derived exosomes carrying miR-26a-5p regulate SCI. METHODS BMSCs and BMSC-derived exosomes were isolated and characterized by Oil Red O and alizarin red staining, transmission electron microscopy, flow cytometry, nanoparticle tracking analysis and Western blotting. PC12 cells were treated with lipopolysaccharides (LPS), and SCI was established through laminectomy with contusion injury in rats. Annexin-V staining, CCK-8 and EdU incorporation were applied to determine cell apoptosis, viability, and proliferation. Hematoxylin and Eosin, Nissl and TUNEL staining was used to evaluate SCI injury and apoptosis in the spinal cord. Luciferase and chromatin immunoprecipitation assays were applied to evaluate gene interaction. RESULTS BMSC-derived exosomes facilitated LPS-treated PC12 cell proliferation and inhibited apoptosis by delivering miR-26a-5p. Moreover, BMSC-derived exosomal miR-26a-5p alleviated SCI. Furthermore, miR-26a-5p inhibited EZH2 expression by directly binding to EZH2, and EZH2 inhibited BDNF expression via promoting H3K27me3. Increased phosphorylated CREB enhanced KCC2 transcription and expression by binding to its promoter. Knockdown of miR-26a-5p abrogated BMSC-derived exosome-mediated protection in LPS-treated PC12 cells, but it was reversed by KCC2 overexpression. CONCLUSION BMSC-derived exosomes carrying miR-26a-5p repressed EZH2 expression to promote BDNF and TrkB expression and CREB phosphorylation and subsequently increase KCC2 expression, thus protecting PC12 cells and ameliorating SCI.
Collapse
Affiliation(s)
- Min Chen
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Yu Lin
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Wenbin Guo
- Department of Pathology, Fujian Pingtan Comprehensive Experimental Area Hospital, Fuzhou, 350400, China
| | - Lihui Chen
- Laboratory Medicine, Fujian Pingtan Comprehensive Experimental Area Hospital, Fuzhou, 350400, China.
| |
Collapse
|
3
|
Xu X, Liu R, Li Y, Zhang C, Guo C, Zhu J, Dong J, Ouyang L, Momeni MR. Spinal Cord Injury: From MicroRNAs to Exosomal MicroRNAs. Mol Neurobiol 2024; 61:5974-5991. [PMID: 38261255 DOI: 10.1007/s12035-024-03954-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
Spinal cord injury (SCI) is an unfortunate experience that may generate extensive sensory and motor disabilities due to the destruction and passing of nerve cells. MicroRNAs are small RNA molecules that do not code for proteins but instead serve to regulate protein synthesis by targeting messenger RNA's expression. After SCI, secondary damage like apoptosis, oxidative stress, inflammation, and autophagy occurs, and differentially expressed microRNAs show a function in these procedures. Almost all animal and plant cells release exosomes, which are sophisticated formations of lipid membranes. These exosomes have the capacity to deliver significant materials, such as proteins, RNAs and lipids, to cells in need, regulating their functions and serving as a way of communication. This new method offers a fresh approach to treating spinal cord injury. Obviously, the exosome has the benefit of conveying the transported material across performing regulatory activities and the blood-brain barrier. Among the exosome cargoes, microRNAs, which modulate their mRNA targets, show considerable promise in the pathogenic diagnosis, process, and therapy of SCI. Herein, we describe the roles of microRNAs in SCI. Furthermore, we emphasize the importance of exosomal microRNAs in this disease.
Collapse
Affiliation(s)
- Xiangyang Xu
- Spinal Surgery, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou, Henan, 450003, China
| | - Ruyin Liu
- Spinal Surgery, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou, Henan, 450003, China
| | - Yunpeng Li
- Spinal Surgery, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou, Henan, 450003, China
| | - Cheng Zhang
- College of Traditional Chinese Medicine Orthopedics and Traumatology, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, 450003, China
| | - Chuanghao Guo
- College of Traditional Chinese Medicine Orthopedics and Traumatology, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, 450003, China
| | - Jiong Zhu
- College of Traditional Chinese Medicine Orthopedics and Traumatology, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, 450003, China
| | - Jiaan Dong
- College of Traditional Chinese Medicine Orthopedics and Traumatology, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, 450003, China
| | - Liyun Ouyang
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, 11700, Malaysia.
| | | |
Collapse
|
4
|
Liu FS, Huang HL, Deng LX, Zhang QS, Wang XB, Li J, Liu FB. Identification and bioinformatics analysis of genes associated with pyroptosis in spinal cord injury of rat and mouse. Sci Rep 2024; 14:14023. [PMID: 38890348 PMCID: PMC11189416 DOI: 10.1038/s41598-024-64843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
The mechanism of spinal cord injury (SCI) is highly complex, and an increasing number of studies have indicated the involvement of pyroptosis in the physiological and pathological processes of secondary SCI. However, there is limited bioinformatics research on pyroptosis-related genes (PRGs) in SCI. This study aims to identify and validate differentially expressed PRGs in the GEO database, perform bioinformatics analysis, and construct regulatory networks to explore potential regulatory mechanisms and therapeutic targets for SCI. We obtained high-throughput sequencing datasets of SCI in rats and mice from the GEO database. Differential analysis was conducted using the "limma" package in R to identify differentially expressed genes (DEGs). These genes were then intersected with previously reported PRGs, resulting in a set of PRGs in SCI. GO and KEGG enrichment analyses, as well as correlation analysis, were performed on the PRGs in both rat and mouse models of SCI. Additionally, a protein-protein interaction (PPI) network was constructed using the STRING website to examine the relationships between proteins. Hub genes were identified using Cytoscape software, and the intersection of the top 5 hub genes in rats and mice were selected for subsequent experimentally validated. Furthermore, a competing endogenous RNA (ceRNA) network was constructed to explore potential regulatory mechanisms. The gene expression profiles of GSE93249, GSE133093, GSE138637, GSE174549, GSE45376, GSE171441_3d and GSE171441_35d were selected in this study. We identified 10 and 12 PRGs in rats and mice datasets respectively. Six common DEGs were identified in the intersection of rats and mice PRGs. Enrichment analysis of these DEGs indicated that GO analysis was mainly focused on inflammation-related factors, while KEGG analysis showed that the most genes were enriched on the NOD-like receptor signaling pathway. We constructed a ceRNA regulatory network that consisted of five important PRGs, as well as 24 miRNAs and 34 lncRNAs. This network revealed potential regulatory mechanisms. Additionally, the three hub genes obtained from the intersection were validated in the rat model, showing high expression of PRGs in SCI. Pyroptosis is involved in secondary SCI and may play a significant role in its pathogenesis. The regulatory mechanisms associated with pyroptosis deserve further in-depth research.
Collapse
Affiliation(s)
- Fu-Sheng Liu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Hai-Long Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lin-Xia Deng
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Qian-Shi Zhang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Xiao-Bin Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jing Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Fu-Bing Liu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
5
|
Xu J, Ren Z, Niu T, Li S. Epigenetic mechanism of miR-26b-5p-enriched MSCs-EVs attenuates spinal cord injury. Regen Ther 2024; 25:35-48. [PMID: 38058606 PMCID: PMC10696431 DOI: 10.1016/j.reth.2023.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 12/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) and extracellular vesicles (EVs) are promising therapies for the treatment of spinal cord injury (SCI). This study sought to explore the epigenetic mechanism of miR-26b-5p-enriched MSCs-EVs in SCI. MSCs and MSCs-EVs were isolated and characterized. The SCI rat model was established, followed by Basso-Beattie-Bresnahan scoring and H&E staining. In vitro cell models were established in PC12 cells with lipopolysaccharide (LPS) treatment, followed by cell viability evaluation using CCK-8 assay. The levels of miR-26b-5p, lysine demethylase 6A (KDM6A), NADPH oxidase 4 (NOX4), reactive oxygen species (ROS), and inflammatory factors (TNF-α/IL-1β/IL-6) in tissues and cells were detected. The levels of cy3-lablled miR-26b-5p in tissues and cells were observed by confocal microscopy. The binding of miR-26b-5p to KDM6A 3'UTR and the enrichments of KDM6A and H3K27me3 at the NOX4 promoter were analyzed. MSCs-EVs attenuated motor dysfunction, inflammation, and oxidative stress in SCI rats. MSCs-EVs delivered miR-26b-5p into PC12 cells to reduce LPS-induced inflammation and ROS production and enhance cell viability. miR-26b-5p inhibited KDM6A, and KDM6A reduced H3K27me3 at the NOX4 promoter to promote NOX4. Overexpression of KDM6A or NOX4 reversed the alleviative role of MSCs-EVs in SCI or LPS-induced cell injury. Overall, MSCs-EVs delivered miR-26b-5p into cells to target the KDM6A/NOX4 axis and facilitate the recovery from SCI.
Collapse
Affiliation(s)
- Jinghui Xu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University (Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology), Guangzhou, 510080, China
| | - Zhenxiao Ren
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University (Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology), Guangzhou, 510080, China
| | - Tianzuo Niu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University (Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology), Guangzhou, 510080, China
| | - Siyuan Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University (Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology), Guangzhou, 510080, China
| |
Collapse
|
6
|
Bai Y, Guo N, Xu Z, Chen Y, Zhang W, Chen Q, Bi Z. S100A1 expression is increased in spinal cord injury and promotes inflammation, oxidative stress and apoptosis of PC12 cells induced by LPS via ERK signaling. Mol Med Rep 2022; 27:30. [PMID: 36524376 PMCID: PMC9827259 DOI: 10.3892/mmr.2022.12917] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) is a severe neurological disorder and the molecular mechanisms leading to its poor prognosis remain to be elucidated. S100A1, a mediator of Ca2+ handling of sarcoplasmic reticulum and mitochondrial function, operates as an endogenous danger signal (alarmin) associated with inflammatory response and tissue injury. The aim of the present study was to investigate the expression and biological effects of S100A1 in SCI. A rat model of SCI and a PC12 cell model of lipopolysaccharide (LPS)‑induced inflammation were established to examine S100A1 expression at the mRNA and protein levels. The inflammation level, which was mediated by S100A1, was determined based on inflammatory factor (IL‑1β, IL‑6 and TNF‑α) and anti‑inflammatory factor (IL‑10) expression. The effects of S100A1 on cellular oxidation and anti‑oxidation levels were observed by detecting the levels of reactive oxygen species, superoxide dismutase, catalase activities and nuclear factor erythroid 2‑related factor 2 expression. The protein levels of Bax, Bcl2 and cleaved caspase‑3 were used for the evaluation of the effects of S100A1 on apoptosis. Phosphorylated (p‑)ERK1/2 expression was used to evaluate the effects of S100A1 on ERK signaling. The results revealed that S100A1 expression was significantly upregulated in vivo and in vitro in the PC12 cell model of LPS‑inflammation. The silencing and overexpression of S100A1 helped alleviate and aggravate LPS‑induced inflammation, oxidative stress and apoptosis levels, respectively. S100A1 was found to regulate the ERK signaling pathway positively. An inhibitor of ERK signaling (MK‑8353) partially abolished the promoting effects of the overexpression of S100A1 on inflammation, oxidative stress damage and apoptosis. In conclusion, S100A1 expression was elevated in model of SCI and in the PC12 cell model of LPS‑induced inflammation. Furthermore, the overexpression/silencing S100A1 aggravated/mitigated the inflammation, oxidative stress damage and the apoptosis of LPS‑stimulated PC12 cells via the ERK signaling pathway. The present study revealed the mechanism of S100A1 in SCI, which provided a new theoretic reference for future research on SCI.
Collapse
Affiliation(s)
- Ye Bai
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China,Department of Orthopaedics, The 962nd Hospital of The People's Liberation Army Joint Logistic Support Force, Harbin, Heilongjiang 150000, P.R. China
| | - Ning Guo
- Department of Outpatient, The 962nd Hospital of The People's Liberation Army Joint Logistic Support Force, Harbin, Heilongjiang 150000, P.R. China
| | - Zhanwu Xu
- Department of Orthopaedics, The 962nd Hospital of The People's Liberation Army Joint Logistic Support Force, Harbin, Heilongjiang 150000, P.R. China
| | - Yuxi Chen
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Wenjin Zhang
- Department of Orthopaedics, The 962nd Hospital of The People's Liberation Army Joint Logistic Support Force, Harbin, Heilongjiang 150000, P.R. China
| | - Qinghe Chen
- Department of Orthopaedics, The 962nd Hospital of The People's Liberation Army Joint Logistic Support Force, Harbin, Heilongjiang 150000, P.R. China
| | - Zhenggang Bi
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China,Correspondence to: Dr Zhenggang Bi, Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China, E-mail:
| |
Collapse
|
7
|
He C, Xiao J, Ye Y, Huang S, Zhong Y, Liu L, Liu W, Liu S. Long non-coding RNA-small nucleolar RNA host gene 7 regulates inflammatory responses following spinal cord injury by regulating the microRNA-449a/TNF-α-induced protein 3-interacting protein 2 axis. Bioengineered 2022; 13:10215-10226. [PMID: 35443851 PMCID: PMC9162020 DOI: 10.1080/21655979.2022.2061294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The current study aimed to explore the anti-inflammatory effects of long non-coding RNA-small nucleolar RNA host gene 7 (lncRNA-SNHG7) and its mechanism in spinal cord injury (SCI) models. SCI models were established both in vivo and in vitro. Reverse transcription-quantitative PCR was performed to determine the expression levels of lncRNA-SNHG7 in SCI models. Bioinformatics analysis and dual-luciferase reporter assays were carried out to confirm the interaction between lncRNA-SNHG7 with microRNA (miR)-499a and TNF-α-induced protein 3-interacting protein 2 (TNIP2). In addition, cell viability, apoptosis, and the secretion of inflammatory cytokines were assessed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, flow cytometric analysis, and enzyme linked immunosorbent assay (ELISA), respectively. The results showed that lncRNA-SNHG7 was markedly downregulated in the SCI model group. LncRNA-SNHG7 directly bound to miR-499a, which in turn directly targeted TNIP2. In addition, TNIP2 was significantly decreased in SCI rats and lipopolysaccharide (LPS)-treated PC-12 cells. The in vitro results in PC-12 cells revealed that lncRNA-SNHG7 overexpression attenuated neuronal cell death and SCI-mediated inflammatory responses by regulating miR-449a expression. Furthermore, miR-499a knockdown inhibited LPS-induced PC-12 cell injury by targeting TNIP2. In conclusion, lncRNA-SNHG7 modulates the apoptosis and inflammation of PC-12 cells by regulating the miR-449a/TNIP2/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Chunlei He
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Jianhua Xiao
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Yongjun Ye
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Shiqiao Huang
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Yanchun Zhong
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Lulin Liu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Wuyang Liu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Sheng Liu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| |
Collapse
|