1
|
Sweef O, Mahfouz R, Taşcıoğlu T, Albowaidey A, Abdelmonem M, Asfar M, Zaabout E, Corcino YL, Thomas V, Choi ES, Furuta S. Decoding LncRNA in COPD: Unveiling Prognostic and Diagnostic Power and Their Driving Role in Lung Cancer Progression. Int J Mol Sci 2024; 25:9001. [PMID: 39201688 PMCID: PMC11354875 DOI: 10.3390/ijms25169001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer represent formidable challenges in global health, characterized by intricate pathophysiological mechanisms and multifaceted disease progression. This comprehensive review integrates insights from diverse perspectives to elucidate the intricate roles of long non-coding RNAs (lncRNAs) in the pathogenesis of COPD and lung cancer, focusing on their diagnostic, prognostic, and therapeutic implications. In the context of COPD, dysregulated lncRNAs, such as NEAT1, TUG1, MALAT1, HOTAIR, and GAS5, emerge as pivotal regulators of genes involved in the disease pathogenesis and progression. Their identification, profiling, and correlation with the disease severity present promising avenues for prognostic and diagnostic applications, thereby shaping personalized disease interventions. These lncRNAs are also implicated in lung cancer, underscoring their multifaceted roles and therapeutic potential across both diseases. In the domain of lung cancer, lncRNAs play intricate modulatory roles in disease progression, offering avenues for innovative therapeutic approaches and prognostic indicators. LncRNA-mediated immune responses have been shown to drive lung cancer progression by modulating the tumor microenvironment, influencing immune cell infiltration, and altering cytokine production. Their dysregulation significantly contributes to tumor growth, metastasis, and chemo-resistance, thereby emphasizing their significance as therapeutic targets and prognostic markers. This review summarizes the transformative potential of lncRNA-based diagnostics and therapeutics for COPD and lung cancer, offering valuable insights into future research directions for clinical translation and therapeutic development.
Collapse
Affiliation(s)
- Osama Sweef
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Reda Mahfouz
- Core Laboratory, University Hospital Cleveland Medical Center, Department of Pathology, School of Medicine, Case Western Reserve University, 1100 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Clinical Pathology, Faculty of Medicine, Menofia University, Shebin-Elkom 32511, Egypt
| | - Tülin Taşcıoğlu
- Department of Molecular Biology and Genetics, Demiroglu Bilim University, Esentepe Central Campus, Besiktas, 34394 Istanbul, Turkey
| | - Ali Albowaidey
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Mohamed Abdelmonem
- Department of Pathology, Transfusion Medicine Service, Stanford Healthcare, Stanford, CA 94305, USA
| | - Malek Asfar
- Department of Pathology, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Elsayed Zaabout
- Department of Therapeutics & Pharmacology, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA
| | - Yalitza Lopez Corcino
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Venetia Thomas
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Eun-Seok Choi
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Saori Furuta
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| |
Collapse
|
2
|
Wang G, Mi J, Bai J, He Q, Li X, Wang Z. Non-Coding RNAs in Kidney Stones. Biomolecules 2024; 14:213. [PMID: 38397450 PMCID: PMC10886984 DOI: 10.3390/biom14020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Nephrolithiasis is a major public health concern associated with high morbidity and recurrence. Despite decades of research, the pathogenesis of nephrolithiasis remains incompletely understood, and effective prevention is lacking. An increasing body of evidence suggests that non-coding RNAs, especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), play a role in stone formation and stone-related kidney injury. MiRNAs have been studied quite extensively in nephrolithiasis, and a plethora of specific miRNAs have been implicated in the pathogenesis of nephrolithiasis, involving remarkable changes in calcium metabolism, oxalate metabolism, oxidative stress, cell-crystal adhesion, cellular autophagy, apoptosis, and macrophage (Mp) polarization and metabolism. Emerging evidence suggests a potential for miRNAs as novel diagnostic biomarkers of nephrolithiasis. LncRNAs act as competing endogenous RNAs (ceRNAs) to bind miRNAs, thereby modulating mRNA expression to participate in the regulation of physiological mechanisms in kidney stones. Small interfering RNAs (siRNAs) may provide a novel approach to kidney stone prevention and treatment by treating related metabolic conditions that cause kidney stones. Further investigation into these non-coding RNAs will generate novel insights into the mechanisms of renal stone formation and stone-related renal injury and might lead to new strategies for diagnosing and treating this disease.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoran Li
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China; (G.W.); (J.M.); (J.B.); (Q.H.)
| | - Zhiping Wang
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China; (G.W.); (J.M.); (J.B.); (Q.H.)
| |
Collapse
|
3
|
Garbo E, Del Rio B, Ferrari G, Cani M, Napoli VM, Bertaglia V, Capelletto E, Rolfo C, Novello S, Passiglia F. Exploring the Potential of Non-Coding RNAs as Liquid Biopsy Biomarkers for Lung Cancer Screening: A Literature Review. Cancers (Basel) 2023; 15:4774. [PMID: 37835468 PMCID: PMC10571819 DOI: 10.3390/cancers15194774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Lung cancer represent the leading cause of cancer mortality, so several efforts have been focused on the development of a screening program. To address the issue of high overdiagnosis and false positive rates associated to LDCT-based screening, there is a need for new diagnostic biomarkers, with liquid biopsy ncRNAs detection emerging as a promising approach. In this scenario, this work provides an updated summary of the literature evidence about the role of non-coding RNAs in lung cancer screening. A literature search on PubMed was performed including studies which investigated liquid biopsy non-coding RNAs biomarker lung cancer patients and a control cohort. Micro RNAs were the most widely studied biomarkers in this setting but some preliminary evidence was found also for other non-coding RNAs, suggesting that a multi-biomarker based liquid biopsy approach could enhance their efficacy in the screening context. However, further studies are needed in order to optimize detection techniques as well as diagnostic accuracy before introducing novel biomarkers in the early diagnosis setting.
Collapse
Affiliation(s)
- Edoardo Garbo
- Department of Oncology, University of Turin, San Luigi Hospital, 10124 Orbassano, Italy; (E.G.); (B.D.R.); (G.F.); (M.C.); (V.M.N.); (V.B.); (E.C.); (S.N.)
| | - Benedetta Del Rio
- Department of Oncology, University of Turin, San Luigi Hospital, 10124 Orbassano, Italy; (E.G.); (B.D.R.); (G.F.); (M.C.); (V.M.N.); (V.B.); (E.C.); (S.N.)
| | - Giorgia Ferrari
- Department of Oncology, University of Turin, San Luigi Hospital, 10124 Orbassano, Italy; (E.G.); (B.D.R.); (G.F.); (M.C.); (V.M.N.); (V.B.); (E.C.); (S.N.)
| | - Massimiliano Cani
- Department of Oncology, University of Turin, San Luigi Hospital, 10124 Orbassano, Italy; (E.G.); (B.D.R.); (G.F.); (M.C.); (V.M.N.); (V.B.); (E.C.); (S.N.)
| | - Valerio Maria Napoli
- Department of Oncology, University of Turin, San Luigi Hospital, 10124 Orbassano, Italy; (E.G.); (B.D.R.); (G.F.); (M.C.); (V.M.N.); (V.B.); (E.C.); (S.N.)
| | - Valentina Bertaglia
- Department of Oncology, University of Turin, San Luigi Hospital, 10124 Orbassano, Italy; (E.G.); (B.D.R.); (G.F.); (M.C.); (V.M.N.); (V.B.); (E.C.); (S.N.)
| | - Enrica Capelletto
- Department of Oncology, University of Turin, San Luigi Hospital, 10124 Orbassano, Italy; (E.G.); (B.D.R.); (G.F.); (M.C.); (V.M.N.); (V.B.); (E.C.); (S.N.)
| | - Christian Rolfo
- Center for Thoracic Oncology, Tisch Cancer Institute, Mount Sinai Health System, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Silvia Novello
- Department of Oncology, University of Turin, San Luigi Hospital, 10124 Orbassano, Italy; (E.G.); (B.D.R.); (G.F.); (M.C.); (V.M.N.); (V.B.); (E.C.); (S.N.)
| | - Francesco Passiglia
- Department of Oncology, University of Turin, San Luigi Hospital, 10124 Orbassano, Italy; (E.G.); (B.D.R.); (G.F.); (M.C.); (V.M.N.); (V.B.); (E.C.); (S.N.)
| |
Collapse
|
4
|
Zhang C, Zhou D, Wang Z, Ju Z, He J, Zhao G, Wang R. Risk Model and Immune Signature of m7G-Related lncRNA Based on Lung Adenocarcinoma. Front Genet 2022; 13:907754. [PMID: 35754819 PMCID: PMC9214213 DOI: 10.3389/fgene.2022.907754] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Lung cancer is a major cause of cancer-related deaths globally, with a dismal prognosis. N7-methylguanosine (m7G) is essential for the transcriptional phenotypic modification of messenger RNA (mRNA) and long noncoding RNA (lncRNA). However, research on m7G-related lncRNAs involved in lung adenocarcinoma (LUAD) regulation is still limited. Herein, we aim to establish a prognostic model of m7G-related lncRNAs and investigate their immune properties. Eight prognostic m7G-related lncRNAs were identified using univariate Cox analysis. Six m7G-related lncRNAs were identified using LASSO-Cox regression analysis to construct risk models, and all LUAD patients in The Cancer Genome Atlas (TCGA) cohort was divided into low-risk and high-risk subgroups. The accuracy of the model was verified by Kaplan-Meier analysis, time-dependent receiver operating characteristic, principal component analysis, independent prognostic analysis, nomogram, and calibration curve. Further studies were conducted on the gene set enrichment and disease ontology enrichment analyses. The gene set enrichment analysis (GSEA) revealed that the high-risk group enriched for cancer proliferation pathways, and the enrichment analysis of disease ontology (DO) revealed that lung disease was enriched, rationally explaining the superiority of the risk model. Finally, we found that the low-risk group had higher immune infiltration and checkpoint expression. It can be speculated that the low-risk group has a better effect on immunotherapy. Susceptibility to antitumor drugs in different risk subgroups was assessed, and it found that the high-risk group showed high sensitivity to first-line treatment drugs for non-small cell lung cancer. In conclusion, a risk model based on 6 m7G-related lncRNAs can not only predict the overall survival (OS) rate of LUAD patients but also guide individualized treatment for these patients.
Collapse
Affiliation(s)
- Chuanhao Zhang
- Graduate School of Dalian Medical University, Dalian, China.,Departement of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Dong Zhou
- Departement of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Zhe Wang
- Departement of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Zaishuang Ju
- Departement of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Jiabei He
- Departement of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Genghao Zhao
- Graduate School of Dalian Medical University, Dalian, China.,Departement of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Ruoyu Wang
- Departement of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
5
|
Xin Y, Shang X, Sun X, Xu G, Liu Y, Liu Y. SLC8A1 antisense RNA 1 suppresses papillary thyroid cancer malignant progression via the FUS RNA binding protein (FUS)/NUMB like endocytic adaptor protein (Numbl) axis. Bioengineered 2022; 13:12572-12582. [PMID: 35599603 PMCID: PMC9275960 DOI: 10.1080/21655979.2022.2073125] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Papillary thyroid cancer (PTC) is one of the most prevalent endocrine malignancies and is associated with severe morbidity and high mortality. This study aimed to explore the role of long non-coding RNA (lncRNA) SLC8A1 antisense RNA 1 (SLC8A1-AS1) in the pathogenesis of PTC. In this study, we explored the function of SLC8A1-AS1 in PTC progression. We observed that the expression of SLC8A1-AS1 was downregulated in clinical PTC samples and PTC cell lines compared to that in normal controls. Cell counting kit (CCK)-8 assays demonstrated that the overexpression of SLC8A1-AS1 significantly reduced the proliferation of PTC cells. Consistently, apoptosis of PTC cells was enhanced by SLC8A1-AS1 overexpression. SLC8A1-AS1 overexpression attenuated the invasion and migration of PTC cells. Mechanistically, SLC8A1-AS1 maintained NUMB like endocytic adaptor protein (Numbl) mRNA stability by interacting with FUS RNA Binding Protein (FUS) in PTC cells. Depletion of Numbl reversed the inhibitory effect of SLC8A1-AS1 overexpression on PTC. Thus, we concluded that SLC8A1-AS1 suppresses PTC progression via the FUS/Numbl axis. Our findings provide novel insights into the mechanism underlying SLC8A1-AS1 attenuation of the malignant development of PTC, improving our understanding of the association between lncRNAs and PTC. SLC8A1-AS1 and FUS may be potential targets for PTC treatment.
Collapse
Affiliation(s)
- Yunchao Xin
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Xiaoling Shang
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Xiaoran Sun
- Department of Gastroenterology, the First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Guogang Xu
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Yachao Liu
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Yanbin Liu
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| |
Collapse
|