1
|
Li Q, Zhao M, Hu DD, Qin JJ, He W. Evaluation of hsa_circ_0000018/let-7f-5p/ FAM96A axis in lung adenocarcinoma progression. Cancer Biomark 2024; 39:187-195. [PMID: 38043005 PMCID: PMC11191447 DOI: 10.3233/cbm-230111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/25/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) are critical regulators of lung adenocarcinoma (LA) progression. Although a molecular marker targeting hsa_circ_0000018 has been developed and used for diagnosing colon cancer, the role of this circRNA in LA progression has not been explored till now. OBJECTIVES This study aimed to elucidate the role and regulatory mechanisms of hsa_circ_0000018 in LA progression. METHODS LA tissues and corresponding adjacent non-tumor tissues were collected from 36 patients to confirm the levels of circRNAs, microRNAs (miRNAs), and messenger RNAs (mRNAs) using quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). We also cultured two LA cell lines (A549, PC-9), and the human normal lung epithelial cell line BEAS-2B. Cell function experiments were conducted to assess malignancy in LA cells, including proliferation, migration, and invasion, following forced hsa_circ_0000018 expression. The correlation between hsa_circ_0000018, let-7f-5p, and family with sequence similarity 96 member A (FAM96A) was confirmed by using starBase (miRNA-circRNA interaction database), luciferase assay, and western blotting. RESULTS Expression of hsa_circ_0000018 and FAM96A was reduced, whereas that of let-7f-5p was upregulated in LA. Cell function assays revealed that upregulation of hsa_circ_0000018 had a suppressive effect on the proliferation, migration, and invasion of LA cells. Additionally, hsa_circ_0000018 sponge binds let-7f-5p, resulting in upregulation of FAM96A expression. CONCLUSION Our data reveal hsa_circ_0000018 as a tumor suppressor in LA that targets the let-7f-5p/FAM96A axis. Our findings enrich the known regulatory network of circRNAs in LA.
Collapse
Affiliation(s)
- Qi Li
- Pulmonary and Critical Care Medicine, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Min Zhao
- Pulmonary and Critical Care Medicine, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Dan-Dan Hu
- Pulmonary and Critical Care Medicine, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jun-Jiao Qin
- Pulmonary and Critical Care Medicine, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Wei He
- Department of Oncology, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Song Y, Kelava L, Kiss I. MiRNAs in Lung Adenocarcinoma: Role, Diagnosis, Prognosis, and Therapy. Int J Mol Sci 2023; 24:13302. [PMID: 37686110 PMCID: PMC10487838 DOI: 10.3390/ijms241713302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Lung cancer has emerged as a significant public health challenge and remains the leading cause of cancer-related mortality worldwide. Among various types of lung malignancies, lung adenocarcinoma (LUAD) stands as the most prevalent form. MicroRNAs (miRNAs) play a crucial role in gene regulation, and their involvement in cancer has been extensively explored. While several reviews have been published on miRNAs and lung cancer, there remains a gap in the review regarding miRNAs specifically in LUAD. In this review, we not only highlight the potential diagnostic, prognostic, and therapeutic implications of miRNAs in LUAD, but also present an inclusive overview of the extensive research conducted on miRNAs in this particular context.
Collapse
Affiliation(s)
- Yongan Song
- Department of Public Health Medicine, University of Pécs Medical School, Szigeti Str. 12, 7624 Pécs, Hungary
| | - Leonardo Kelava
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Szigeti Str. 12, 7624 Pécs, Hungary
| | - István Kiss
- Department of Public Health Medicine, University of Pécs Medical School, Szigeti Str. 12, 7624 Pécs, Hungary
| |
Collapse
|
3
|
Xu S, Luo C, Chen D, Tang L, Cheng Q, Chen L, Liu Z. circMMD reduction following tumor treating fields inhibits glioblastoma progression through FUBP1/FIR/DVL1 and miR-15b-5p/FZD6 signaling. J Exp Clin Cancer Res 2023; 42:64. [PMID: 36932454 PMCID: PMC10021944 DOI: 10.1186/s13046-023-02642-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Tumor treating fields (TTF) is the latest treatment for GBM. Circular RNA (circRNA) has been demonstrated to play critical roles in tumorigenesis. However, the molecular mechanism of TTF remained largely unknown and the role of circRNA in TTF was not reported. The aim of this study was to elucidate the role and mechanism of circMMD in TTF treatment of GBM. METHODS Divergent primer was designed to verify the existence of circMMD in GBM cells. The prognostic role of circMMD was explored in glioma specimens. The knockdown and overexpressed plasmids were used to evaluate the effect of circMMD on GBM cell proliferation and TTF efficacy. RNA pull-down and RNA immunoprecipitation were performed to identify binding proteins of circMMD. Subcutaneous and intracranial tumor models were established to validate findings in vivo. RESULTS The expression of circMMD was elevated in GBM and its high expression indicated poor prognoses. TTF intervention could reduce circMMD synthesis, which suppressed GBM proliferation and increased TTF-mediated apoptosis. The reduction of circMMD promoted the interaction between FUBP1 and FIR, which decreased DVL1 transcription. Meanwhile, decreased circMMD would promote the activity of miR-15b-5p to degrade FZD6. Finally, the diminished expression of DVL1 and FZD6 expression suppressed the activation of Wnt/β-catenin pathway. CONCLUSIONS Our study revealed a novel mechanism of TTF that TTF-mediated reduction of circMMD could inhibit Wnt/β-catenin pathway to suppress GBM proliferation.
Collapse
Affiliation(s)
- Shengchao Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, No.87, Xiangya Road, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chengke Luo
- Department of Neurosurgery, Xiangya Hospital, Central South University, No.87, Xiangya Road, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Dikang Chen
- Hunan An Tai Kang Cheng Biotechnology Co., Ltd, Changsha, 410008, China
| | - Lu Tang
- Department of Anesthesiology, Xiangya Hospital, Central South University, ChangshaHunan, 410008, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, No.87, Xiangya Road, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ling Chen
- Department of Neurosurgery, Chinese People's Liberation Army of China (PLA) General Hospital, Medical School of Chinese PLA, Institute of Neurosurgery of Chinese PLA, Beijing, 100853, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, No.87, Xiangya Road, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
4
|
Wang F, Yu C, Chen L, Xu S. Landscape of circular RNAs in different types of lung cancer and an emerging role in therapeutic resistance (Review). Int J Oncol 2022; 62:21. [PMID: 36562354 PMCID: PMC9812256 DOI: 10.3892/ijo.2022.5469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Lung cancer is one of the most common malignant tumor types and the leading cause of cancer‑associated death worldwide. Different types of lung cancer exhibit differences in terms of pathophysiology and pathogenesis, and also treatment and prognosis. Accumulating evidence has indicated that circular RNAs (circRNAs) are abnormally expressed among different types of lung cancer and confer important biological functions in progression and prognosis. However, studies comparing different circRNAs in lung cancer subtypes are scarce. Furthermore, circRNAs have an important role in drug resistance and are related to clinicopathological features in lung cancer. Summaries of the association of circRNAs with drug resistance are also scarce in the literature. The present study outlined the biological functions of circRNAs and focused on discriminating differential circRNA patterns and mechanisms in three different types of lung cancer. The emerging roles of circRNAs in the resistance to chemotherapy, targeted therapy, radiotherapy and immunotherapy were also highlighted. Understanding these aspects of circRNAs sheds light on novel physiological and pathophysiological processes of lung cancer and suggests the application of circRNAs as biomarkers for diagnosis and prognosis, as well as therapeutic resistance.
Collapse
Affiliation(s)
- Fan Wang
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical University, Shanghai 200433, P.R. China
| | - Chuting Yu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical University, Shanghai 200433, P.R. China
| | - Ling Chen
- Department of Thoracic Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China,Correspondence to: Dr Ling Chen, Department of Thoracic Surgery, Changhai Hospital, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, P.R. China, E-mail:
| | - Sheng Xu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical University, Shanghai 200433, P.R. China,Professor Sheng Xu, National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, P.R. China, E-mail:
| |
Collapse
|
5
|
Tang X, Qi C, Zhou H, Liu Y. Critical roles of PTPN family members regulated by non-coding RNAs in tumorigenesis and immunotherapy. Front Oncol 2022; 12:972906. [PMID: 35957898 PMCID: PMC9360549 DOI: 10.3389/fonc.2022.972906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/04/2022] [Indexed: 12/22/2022] Open
Abstract
Since tyrosine phosphorylation is reversible and dynamic in vivo, the phosphorylation state of proteins is controlled by the opposing roles of protein tyrosine kinases (PTKs) and protein tyrosine phosphatase (PTPs), both of which perform critical roles in signal transduction. Of these, intracellular non-receptor PTPs (PTPNs), which belong to the largest class I cysteine PTP family, are essential for the regulation of a variety of biological processes, including but not limited to hematopoiesis, inflammatory response, immune system, and glucose homeostasis. Additionally, a substantial amount of PTPNs have been identified to hold crucial roles in tumorigenesis, progression, metastasis, and drug resistance, and inhibitors of PTPNs have promising applications due to striking efficacy in antitumor therapy. Hence, the aim of this review is to summarize the role played by PTPNs, including PTPN1/PTP1B, PTPN2/TC-PTP, PTPN3/PTP-H1, PTPN4/PTPMEG, PTPN6/SHP-1, PTPN9/PTPMEG2, PTPN11/SHP-2, PTPN12/PTP-PEST, PTPN13/PTPL1, PTPN14/PEZ, PTPN18/PTP-HSCF, PTPN22/LYP, and PTPN23/HD-PTP, in human cancer and immunotherapy and to comprehensively describe the molecular pathways in which they are implicated. Given the specific roles of PTPNs, identifying potential regulators of PTPNs is significant for understanding the mechanisms of antitumor therapy. Consequently, this work also provides a review on the role of non-coding RNAs (ncRNAs) in regulating PTPNs in tumorigenesis and progression, which may help us to find effective therapeutic agents for tumor therapy.
Collapse
Affiliation(s)
- Xiaolong Tang
- Department of Clinical Laboratory Diagnostics, Binzhou Medical University, Binzhou, China
| | - Chumei Qi
- Department of Clinical Laboratory, Dazhou Women and Children’s Hospital, Dazhou, China
| | - Honghong Zhou
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Honghong Zhou, ; Yongshuo Liu,
| | - Yongshuo Liu
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- *Correspondence: Honghong Zhou, ; Yongshuo Liu,
| |
Collapse
|
6
|
Li S, Zhang H, Jiao Y, Song X, Wei L, Liu X. Oxymatrine induces anti-tumor response in cervical cancer by modulating circ_0008460/miR-197-3p/ribonucleotide reductase subunit M2 (RRM2). Bioengineered 2022; 13:12912-12926. [PMID: 35609310 PMCID: PMC9275878 DOI: 10.1080/21655979.2022.2078943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Oxymatrine (OMT) has exhibited an anti-cancer role in human cancers, including cervical cancer (CC). The dysregulated circular RNAs (circRNAs) are key regulators in cancer biology, and circ_0008460 was upregulated in CC. This study was performed to investigate the circRNA-based molecular mechanism for OMT in CC. RNA detection for circ_0008460, microRNA-197-3p (miR-197-3p), or ribonucleotide reductase subunit M2 (RRM2) was completed using reverse transcription-quantitative polymerase chain reaction assay. Cell behaviors were assessed by Cell Counting Kit-8 assay for cell viability, colony formation assay or Edu assay for cell proliferation, flow cytometry for cell apoptosis, and wound healing assay/transwell assay for migration/invasion. Protein expression examination was conducted using western blot. Dual-luciferase reporter assay and RNA pull-down assay were applied to confirm target binding. Tumor xenograft assay was performed for OMT research in vivo. OMT induced circ_0008460 downregulation in CC cells. OMT-induced inhibitory effects on cell growth, migration, and invasion but promoting effect on cell apoptosis were attenuated by circ_0008460. Circ_0008460 directly interacted with miR-197-3p, and OMT inhibited malignant behaviors of CC cells via mediating circ_0008460/miR-197-3p axis. RRM2 acted as a target for miR-197-3p and circ_0008460 affected the RRM2 level through absorbing miR-197-3p. OMT upregulated miR-197-3p to inhibit RRM2 expression to impede CC cell development. CC tumorigenesis was suppressed by OMT via targeting circ_0008460/miR-197-3p/RRM2 axis in vivo. These results suggested that OMT restrained CC cell progression in vitro and tumor growth in vivo by downregulating circ_0008460 to mediate miR-197-3p/RRM2 axis.
Collapse
Affiliation(s)
- Siwei Li
- Pharmacy Department, Northwest Women and Children Hospital, Xi'an, Shaanxi, China
| | - Heng Zhang
- Pharmacy Department, Northwest Women and Children Hospital, Xi'an, Shaanxi, China
| | - Yunping Jiao
- Clinical Pharmacy Department, the Second People's Hospital of Shaanxi Province, Xi'an, Shaanxi, China
| | - Xiao Song
- Pharmacy Department, Northwest Women and Children Hospital, Xi'an, Shaanxi, China
| | - Lei Wei
- Pharmacy Department, Northwest Women and Children Hospital, Xi'an, Shaanxi, China
| | - Xing Liu
- Obstetrics Department, Northwest Women and Children Hospital, Xi'an, Shaanxi, China
| |
Collapse
|