1
|
Liu Y, Yuan H, Fan J, Wang H, Xie H, Wan J, Hu X, Zhou J, Liu L. The pathogenesis mechanism and potential clinical value of lncRNA in gliomas. Discov Oncol 2024; 15:266. [PMID: 38967893 PMCID: PMC11226588 DOI: 10.1007/s12672-024-01144-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024] Open
Abstract
Glioma is the most common malignant tumor in the central nervous system, and its unique pathogenesis often leads to poor treatment outcomes and prognosis. In 2021, the World Health Organization (WHO) divided gliomas into five categories based on their histological characteristics and molecular changes. Non-coding RNA is a type of RNA that does not encode proteins but can exert biological functions at the RNA level, and long non-coding RNA (lncRNA) is a type of non-coding RNA with a length exceeding 200 nt. It is controlled by various transcription factors and plays an indispensable role in the regulatory processes in various cells. Numerous studies have confirmed that the dysregulation of lncRNA is critical in the pathogenesis, progression, and malignancy of gliomas. Therefore, this article reviews the proliferation, apoptosis, invasion, migration, angiogenesis, immune regulation, glycolysis, stemness, and drug resistance changes caused by the dysregulation of lncRNA in gliomas, and summarizes their potential clinical significance in gliomas.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Clinical Medicine, School of Clinical Medical, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hui Yuan
- Department of Clinical Medicine, School of Clinical Medical, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - JingJia Fan
- Department of Clinical Medicine, School of Clinical Medical, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Han Wang
- Department of Clinical Medicine, School of Clinical Medical, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - HuiYu Xie
- Department of Clinical Medicine, School of Clinical Medical, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - JunFeng Wan
- Department of Clinical Medicine, School of Clinical Medical, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - XueYing Hu
- Department of Clinical Medicine, School of Clinical Medical, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jie Zhou
- Dept Neurosurg, Affiliated Hosp, Southwest Med Univ, Luzhou, 646000, People's Republic of China.
| | - Liang Liu
- Dept Neurosurg, Affiliated Hosp, Southwest Med Univ, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
2
|
Palizkaran Yazdi M, Barjasteh A, Moghbeli M. MicroRNAs as the pivotal regulators of Temozolomide resistance in glioblastoma. Mol Brain 2024; 17:42. [PMID: 38956588 PMCID: PMC11218189 DOI: 10.1186/s13041-024-01113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive nervous system tumor with a poor prognosis. Although, surgery, radiation therapy, and chemotherapy are the current standard protocol for GBM patients, there is still a poor prognosis in these patients. Temozolomide (TMZ) as a first-line therapeutic agent in GBM can easily cross from the blood-brain barrier to inhibit tumor cell proliferation. However, there is a high rate of TMZ resistance in GBM patients. Since, there are limited therapeutic choices for GBM patients who develop TMZ resistance; it is required to clarify the molecular mechanisms of chemo resistance to introduce the novel therapeutic targets. MicroRNAs (miRNAs) regulate chemo resistance through regulation of drug metabolism, absorption, DNA repair, apoptosis, and cell cycle. In the present review we discussed the role of miRNAs in TMZ response of GBM cells. It has been reported that miRNAs mainly induced TMZ sensitivity by regulation of signaling pathways and autophagy in GBM cells. Therefore, miRNAs can be used as the reliable diagnostic/prognostic markers in GBM patients. They can also be used as the therapeutic targets to improve the TMZ response in GBM cells.
Collapse
Affiliation(s)
- Mahsa Palizkaran Yazdi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Barjasteh
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Wu J, Wang C, Cui X, Liu L, Wang L, Wang J, Xue X, Dang T. MicroRNA-128 acts as a suppressor in the progression of gastrointestinal stromal tumor by targeting B-lymphoma Mo-MLV insertion region 1. Clin Transl Oncol 2024; 26:363-374. [PMID: 38103120 DOI: 10.1007/s12094-023-03354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/11/2023] [Indexed: 12/17/2023]
Abstract
INTRODUCTION The critical role of microRNA-128 (miR-128) in gastrointestinal-related diseases has been documented. In the current study, we tried to clarify the specific role miR-128 in gastrointestinal stromal tumor (GIST) and the underlying mechanism. METHODS Differentially expressed genes in GIST were identified following bioinformatics analysis. Then, expression patterns of miR-128 and B-lymphoma Mo-MLV insertion region 1 (BMI-1) in clinical tissue samples and cell lines were characterized, followed by validation of their correlation. GIST-T1 cells were selected and transfected with different mimic, inhibitor, or siRNA plasmids, after which the biological functions were assayed. RESULTS We identified low miR-128 and high BMI-1 expression in GIST tissues of 78 patients and 4 GIST cell lines. Ectopic expression of miR-128 or silencing of BMI-1 suppressed the malignant potentials of GIST-T1 cells. As a target of miR-128, BMI-1 re-expression could partly counteract the suppressive effect of miR-128 on the malignancy of GIST-T1 cells. CONCLUSION Our study provided evidence that miR-128-mediated silencing of BMI-1 could prevent malignant progression of GIST, highlighting a promising anti-tumor target for combating GIST.
Collapse
Affiliation(s)
- Jinbao Wu
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No. 30, Hudemulin Street, Qingshan District, Baotou, 014030, Inner Mongolia Autonomous Region, People's Republic of China
| | - Changjuan Wang
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No. 30, Hudemulin Street, Qingshan District, Baotou, 014030, Inner Mongolia Autonomous Region, People's Republic of China
| | - Xia Cui
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No. 30, Hudemulin Street, Qingshan District, Baotou, 014030, Inner Mongolia Autonomous Region, People's Republic of China
| | - Lin Liu
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No. 30, Hudemulin Street, Qingshan District, Baotou, 014030, Inner Mongolia Autonomous Region, People's Republic of China
| | - Lu Wang
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No. 30, Hudemulin Street, Qingshan District, Baotou, 014030, Inner Mongolia Autonomous Region, People's Republic of China
| | - Jing Wang
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No. 30, Hudemulin Street, Qingshan District, Baotou, 014030, Inner Mongolia Autonomous Region, People's Republic of China
| | - Xiaohui Xue
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No. 30, Hudemulin Street, Qingshan District, Baotou, 014030, Inner Mongolia Autonomous Region, People's Republic of China
| | - Tong Dang
- Inner Mongolia Institute of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No. 30, Hudemulin Street, Qingshan District, Baotou, 014030, Inner Mongolia Autonomous Region, People's Republic of China.
| |
Collapse
|
4
|
Wang Q, Zheng C, Hou H, Bao X, Tai H, Huang X, Li Z, Li Z, Wang Q, Pan Q, Wang L, Zhou S, Bian Y, Pan Q, Gong A, Xu M. Interplay of Sphingolipid Metabolism in Predicting Prognosis of GBM Patients: Towards Precision Immunotherapy. J Cancer 2024; 15:275-292. [PMID: 38164288 PMCID: PMC10751665 DOI: 10.7150/jca.89338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/16/2023] [Indexed: 01/03/2024] Open
Abstract
Background: In spite of numerous existing bio-surveillance systems for predicting glioma (GBM) prognosis, enhancing the efficacy of immunotherapy remains an ongoing conundrum. The continual scrutiny of the dynamic interplay between the sphingolipid metabolic pathway and tumor immunophenotypes has unveiled potential implications. However, the intricate orchestration of functional and regulatory mechanisms by long non-coding RNAs (lncRNAs) in GBM, particularly in the context of sphingolipid metabolism, remains cryptic. Methods: We harnessed established R packages to intersect gene expression profiles of GBM patients within the The Cancer Genome Atlas (TCGA) database with the compilation of sphingolipid metabolism genes from GeneCards. This enabled us to discern markedly distinct lncRNAs, which were subsequently deployed to construct a robust prognostic model utilizing Lasso-Cox regression analysis. We then scrutinized the immune microenvironment across various risk strata using the ssGSEA and CIBERSORT algorithms. To evaluate mutation patterns and drug resistance profiles within patient subgroups, we devised the "Prophytic" and "Maftools" packages, respectively. Results: Our investigation scrutinized lncRNAs linked to sphingolipid metabolism, utilizing glioma specimens from TCGA. We meticulously curated 1224 sphingolipid-associated genes gleaned from GeneCards and pinpointed 272 differentially expressed mRNAs via transcriptomic analysis. Enrichment analyses underscored their significance in sphingolipid processes. A prognostic model founded on 17 meticulously selected lncRNAs was systematically constructed and validated. This model adeptly stratified GBM patients into high- and low-risk categories, yielding highly precise prognostic insights. We also discerned correlations between immune cell infiltration and genetic mutation discrepancies, along with distinct therapeutic responses through drug sensitivity analysis. Notably, computational findings were corroborated through experimental validation by RT-PCR. Conclusion: In summation, our exhaustive inquiry underscores the multifaceted utility of the sphingolipid metabolic pathway as an autonomous diagnostic and prognostic indicator for glioma patients. Furthermore, we amalgamate a profusion of substantiated evidence concerning immune infiltration and gene mutations, thereby reinforcing the proposition that sphingolipid metabolism may function as a pivotal determinant in the panorama of immunotherapeutic interventions.
Collapse
Affiliation(s)
- Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Chuanhua Zheng
- Department of Neurosurgery, the Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| | - Hanjin Hou
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xin Bao
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Huading Tai
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhangzuo Li
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Qiaowei Wang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Qi Pan
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Longbin Wang
- Department of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shujing Zhou
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Yanjie Bian
- Xinxiang Medical University, Xinxiang, China
| | - Qier Pan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Aihua Gong
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| |
Collapse
|
5
|
Alli VJ, Yadav P, Suresh V, Jadav SS. Synthetic and Medicinal Chemistry Approaches Toward WEE1 Kinase Inhibitors and Its Degraders. ACS OMEGA 2023; 8:20196-20233. [PMID: 37323408 PMCID: PMC10268025 DOI: 10.1021/acsomega.3c01558] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023]
Abstract
WEE1 is a checkpoint kinase critical for mitotic events, especially in cell maturation and DNA repair. Most cancer cells' progression and survival are linked with elevated levels of WEE1 kinase. Thus, WEE1 kinase has become a new promising druggable target. A few classes of WEE1 inhibitors are designed by rationale or structure-based techniques and optimization approaches to identify selective acting anticancer agents. The discovery of the WEE1 inhibitor AZD1775 further emphasized WEE1 as a promising anticancer target. Therefore, the current review provides a comprehensive data on medicinal chemistry, synthetic approaches, optimization methods, and the interaction profile of WEE1 kinase inhibitors. In addition, WEE1 PROTAC degraders and their synthetic procedures, including a list of noncoding RNAs necessary for regulation of WEE1, are also highlighted. From the standpoint of medicinal chemistry, the contents of this compilation serve as an exemplar for the further design, synthesis, and optimization of promising WEE1-targeted anticancer agents.
Collapse
Affiliation(s)
- Vidya Jyothi Alli
- Department
of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology Tarnaka, Uppal Road, Hyderabad 500037, India
| | - Pawan Yadav
- Department
of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology Tarnaka, Uppal Road, Hyderabad 500037, India
| | - Vavilapalli Suresh
- Department
of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Tarnaka, Uppal Road, Hyderabad 500037, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Surender Singh Jadav
- Department
of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology Tarnaka, Uppal Road, Hyderabad 500037, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Santos F, Capela AM, Mateus F, Nóbrega-Pereira S, Bernardes de Jesus B. Non-coding antisense transcripts: fine regulation of gene expression in cancer. Comput Struct Biotechnol J 2022; 20:5652-5660. [PMID: 36284703 PMCID: PMC9579725 DOI: 10.1016/j.csbj.2022.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/14/2022] Open
Abstract
Natural antisense transcripts (NATs) are coding or non-coding RNA sequences transcribed on the opposite direction from the same genomic locus. NATs are widely distributed throughout the human genome and seem to play crucial roles in physiological and pathological processes, through newly described and targeted mechanisms. NATs represent the intricate complexity of the genome organization and constitute another layer of potential targets in disease. Here, we focus on the interesting and unique role of non-coding NATs in cancer, paying particular attention to those acting as miRNA sponges.
Collapse
Affiliation(s)
| | | | | | | | - Bruno Bernardes de Jesus
- Corresponding author at: Department of Medical Sciences and Institute of Biomedicine – iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|