1
|
Caggiano EG, Taniguchi CM. UCP2 and pancreatic cancer: conscious uncoupling for therapeutic effect. Cancer Metastasis Rev 2024; 43:777-794. [PMID: 38194152 PMCID: PMC11156755 DOI: 10.1007/s10555-023-10157-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/13/2023] [Indexed: 01/10/2024]
Abstract
Pancreatic cancer has an exaggerated dependence on mitochondrial metabolism, but methods to specifically target the mitochondria without off target effects in normal tissues that rely on these organelles is a significant challenge. The mitochondrial uncoupling protein 2 (UCP2) has potential as a cancer-specific drug target, and thus, we will review the known biology of UCP2 and discuss its potential role in the pathobiology and future therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Emily G Caggiano
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Cullen M Taniguchi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
2
|
Tolue Ghasaban F, Ghanei M, Mahmoudian RA, Taghehchian N, Abbaszadegan MR, Moghbeli M. MicroRNAs as the critical regulators of epithelial mesenchymal transition in pancreatic tumor cells. Heliyon 2024; 10:e30599. [PMID: 38726188 PMCID: PMC11079401 DOI: 10.1016/j.heliyon.2024.e30599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Pancreatic cancer (PC), as one of the main endocrine and digestive systems malignancies has the highest cancer related mortality in the world. Lack of the evident clinical symptoms and appropriate diagnostic markers in the early stages of tumor progression are the main reasons of the high mortality rate among PC patients. Therefore, it is necessary to investigate the molecular pathways involved in the PC progression, in order to introduce novel early diagnostic methods. Epithelial mesenchymal transition (EMT) is a critical cellular process associated with pancreatic tumor cells invasion and distant metastasis. MicroRNAs (miRNAs) are also important regulators of EMT process. In the present review, we discussed the role of miRNAs in regulation of EMT process during PC progression. It has been reported that the miRNAs mainly regulate the EMT process in pancreatic tumor cells through the regulation of EMT-specific transcription factors and several signaling pathways such as WNT, NOTCH, TGF-β, JAK/STAT, and PI3K/AKT. Considering the high stability of miRNAs in body fluids and their role in regulation of EMT process, they can be introduced as the non-invasive diagnostic markers in the early stages of malignant pancreatic tumors. This review paves the way to introduce a non-invasive EMT based panel marker for the early tumor detection among PC patients.
Collapse
Affiliation(s)
- Faezeh Tolue Ghasaban
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Ghanei
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reihaneh Alsadat Mahmoudian
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Zheng K, Zhang XX, Yu X, Yu B, Yang YF. Identification and validation of a prognostic anoikis-related gene signature in papillary thyroid carcinoma by integrated analysis of single-cell and bulk RNA-sequencing. Medicine (Baltimore) 2024; 103:e38144. [PMID: 38728457 PMCID: PMC11081552 DOI: 10.1097/md.0000000000038144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Papillary thyroid carcinoma (PTC) prognosis may be deteriorated due to the metastases, and anoikis palys an essential role in the tumor metastasis. However, the potential effect of anoikis-related genes on the prognosis of PTC was unclear. The mRNA and clinical information were obtained from the cancer genome atlas database. Hub genes were identified and risk model was constructed using Cox regression analysis. Kaplan-Meier (K-M) curve was applied for the survival analysis. Immune infiltration and immune therapy response were calculated using CIBERSORT and TIDE. The identification of cell types and cell interaction was performed by Seurat, SingleR and CellChat packages. GO, KEGG, and GSVA were applied for the enrichment analysis. Protein-protein interaction network was constructed in STRING and Cytoscape. Drug sensitivity was assessed in GSCA. Based on bulk RNA data, we identified 4 anoikis-related risk signatures, which were oncogenes, and constructed a risk model. The enrichment analysis found high risk group was enriched in some immune-related pathways. High risk group had higher infiltration of Tregs, higher TIDE score and lower levels of monocytes and CD8 T cells. Based on scRNA data, we found that 4 hub genes were mainly expressed in monocytes and macrophages, and they interacted with T cells. Hub genes were significantly related to immune escape-related genes. Drug sensitivity analysis suggested that cyclin dependent kinase inhibitor 2A may be a better chemotherapy target. We constructed a risk model which could effectively and steadily predict the prognosis of PTC. We inferred that the immune escape may be involved in the development of PTC.
Collapse
Affiliation(s)
- Ke Zheng
- Department of Thyroid and Breast Surgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiu-Xia Zhang
- Department of Thyroid and Breast Surgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Yu
- Department of Thyroid and Breast Surgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Yu
- Department of Thyroid and Breast Surgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yi-Fei Yang
- Department of Thyroid and Breast Surgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Ge Y, Hong M, Zhang Y, Wang J, Li L, Zhu H, Sheng Y, Wu WS, Zhang Z. miR-30e-5p regulates leukemia stem cell self-renewal through the Cyb561/ROS signaling pathway. Haematologica 2024; 109:411-421. [PMID: 37584287 PMCID: PMC10828755 DOI: 10.3324/haematol.2023.282837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023] Open
Abstract
Leukemia stem cells (LSC) represent a crucial and rare subset of cells present in acute myeloid leukemia (AML); they play a pivotal role in the initiation, maintenance, and relapse of this disease. Targeting LSC holds great promise for preventing AML relapse and improving long-term outcomes. However the precise molecular mechanisms governing LSC self-renewal are still poorly understood. Here, we present compelling evidence that the expression of miR-30e-5p, a potential tumor-suppressive microRNA, is significantly lower in AML samples than in healthy bone marrow samples. Forced expression of miR- 30e effectively inhibits leukemogenesis, impairs LSC self-renewal, and delays leukemia progression. Mechanistically, Cyb561 acts as a direct target of miR-30e-5p in LSC, and its deficiency restricts the self-renewal of LSC by activating reactive oxygen series signaling and markedly prolongs recipients' survival. Moreover, genetic or pharmacological overexpression of miR-30e-5p or knockdown of Cyb561 suppresses the growth of human AML cells. In conclusion, our findings establish the crucial role of the miR-30e-5p/Cyb561/ROS axis in finely regulating LSC self-renewal, highlighting Cyb561 as a potential therapeutic target for LSC-directed therapies.
Collapse
Affiliation(s)
- Yanwen Ge
- School of Life Sciences, Shanghai University, Shanghai, 200444
| | - Mei Hong
- School of Life Sciences, Shanghai University, Shanghai, 200444
| | - Yu Zhang
- School of Life Sciences, Shanghai University, Shanghai, 200444
| | - Jiachen Wang
- School of Life Sciences, Shanghai University, Shanghai, 200444
| | - Lei Li
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022
| | - Hongkai Zhu
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011
| | - Yue Sheng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011
| | - Wen-Shu Wu
- Division of Hematology/Oncology, Department of Medicine and University of Illinois Cancer Center, the University of Illinois at Chicago, IL 60612.
| | - Zhonghui Zhang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China; Shaoxing Institute of Technology, Shanghai University, Shaoxing, 312000.
| |
Collapse
|
5
|
魏 可, 石 纪, 肖 雨, 王 文, 杨 清, 陈 昌. [MiR-30e-5p overexpression promotes proliferation and migration of colorectal cancer cells by activating the CXCL12 axis via downregulating PTEN]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1081-1092. [PMID: 37488790 PMCID: PMC10366527 DOI: 10.12122/j.issn.1673-4254.2023.07.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Indexed: 07/26/2023]
Abstract
OBJECTIVE To investigate the regulatory effects of miR-30e-5p on biological behaviors of colorectal cancer cells and the role of PTEN/CXCL12 axis in mediating these effects. METHODS Bioinformatic analysis was performed to explore the differential expression of miR-30e-5p between colorectal cancer tissues and normal tissues. RT-qPCR was used to detect the differential expression of miR-30e-5p in intestinal epithelial cells and colorectal cancer cells. Bioinformatics and dual luciferase assay were used to predict and validate the targeting relationship between miR-30e-5p and PTEN. Human and murine colorectal cancer cell lines were transfected with miR-30e-5p mimics, miR-30e-5p inhibitor, miR-30e-5p mimics+LV-PTEN, or miR-30e-5p inhibitor + si-PTEN. The changes in biological behaviors of the cells were detected using plate clone formation assay, CCK-8 assay, flow cytometry, scratch healing and Transwell assays. PTEN and CXCL12 expressions in the cancer cells were detected by Western blotting. The effects of miR-30e-5p inhibitor on colorectal carcinogenesis and development were observed in nude mice. RESULTS Bioinformatic analysis showed that miR-30e-5p expression was significantly elevated in colorectal cancer tissues compared with the adjacent tissue (P < 0.01). Higher miR-30e-5p expression was detected in colorectal cancer cell lines than in intestinal epithelial cells (P < 0.01). Dual luciferase assay confirmed the targeting relationship between miR-30e-5p and PTEN (P < 0.05). Transfection with miR-30e-5p mimics significantly enhanced proliferation and metastasis and inhibited apoptosis of the colorectal cancer cells (P < 0.05), and co-transfection with LV-PTEN obviously reversed these changes (P < 0.05). MiR-30e-5p mimics significantly inhibited PTEN expression and enhanced CXCL12 expression in the cancer cells (P < 0.01), and miR-30e-5p inhibitor produced the opposite effect. Transfection with miR-30e-5p inhibitor caused cell cycle arrest in the cancer cells, which was reversed by co-transfection with si-PTEN (P < 0.05). In the in vivo experiments, the colorectal cancer cells transfected with miR-30e-5p inhibitor showed significantly lowered tumorigenesis. CONCLUSION Overexpression of miR-30e-5p promotes the malignant behaviors of colorectal cancer cells by downregulating PTEN to activate the CXCL12 axis.
Collapse
Affiliation(s)
- 可 魏
- 蚌埠医学院癌症转化医学安徽省重点实验室,安徽 蚌埠 233000Anhui Provincial Key Laboratory of Cancer Translational Medicine, Bengbu Medical College, Bengbu 233000, China
- 蚌埠医学院肿瘤基础研究与临床检验诊断重点实验室,安徽 蚌埠 233000Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu 233000, China
| | - 纪雯 石
- 蚌埠医学院癌症转化医学安徽省重点实验室,安徽 蚌埠 233000Anhui Provincial Key Laboratory of Cancer Translational Medicine, Bengbu Medical College, Bengbu 233000, China
| | - 雨寒 肖
- 蚌埠医学院癌症转化医学安徽省重点实验室,安徽 蚌埠 233000Anhui Provincial Key Laboratory of Cancer Translational Medicine, Bengbu Medical College, Bengbu 233000, China
- 蚌埠医学院肿瘤基础研究与临床检验诊断重点实验室,安徽 蚌埠 233000Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu 233000, China
| | - 文锐 王
- 蚌埠医学院生物技术教研室,安徽 蚌埠 233000Department of Biotechnology, Bengbu Medical College, Bengbu 233000, China
| | - 清玲 杨
- 蚌埠医学院生物化学与分子生物学教研室,安徽 蚌埠 233000Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu 233000, China
| | - 昌杰 陈
- 蚌埠医学院生物化学与分子生物学教研室,安徽 蚌埠 233000Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu 233000, China
| |
Collapse
|
6
|
Timofeeva AV, Fedorov IS, Sukhova YV, Ivanets TY, Sukhikh GT. Prediction of Early- and Late-Onset Pre-Eclampsia in the Preclinical Stage via Placenta-Specific Extracellular miRNA Profiling. Int J Mol Sci 2023; 24:ijms24098006. [PMID: 37175711 PMCID: PMC10178353 DOI: 10.3390/ijms24098006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Pre-eclampsia (PE) is one of the severe complications of pregnancy in 3-8% of all cases and is one of the leading causes of maternal and perinatal mortality. The fundamental role in the pathogenesis of PE is assigned to maternal and/or placental factors, whereby the combination and manifestation of which determines the time of onset of the clinical symptoms of PE (before or after 34 weeks of gestation) and their severity. It is known that the expression level of miRNAs, the regulators of signaling cascades in the cell, depends on gestational age. In the present study, we focused on the identification of the placenta-specific miRNAs that differentiate between early- and late-onset pre-eclampsia (ePE and lPE) throughout pregnancy, from the first to the third trimester. A total of 67 patients were analyzed using small RNA deep sequencing and real-time quantitative PCR, which resulted in a core list of miRNAs (let-7b-5p, let-7d-3p, let-7f-5p, let-7i-5p, miR-22-5p, miR-451a, miR-1246, miR-30e-5p, miR-20a-5p, miR-1307-3p, and miR-320e), which in certain combinations can predict ePE or lPE with 100% sensitivity and 84-100% specificity in the 1st trimester of pregnancy. According to the literature data, these miRNA predictors of PE control trophoblast proliferation, invasion, migration, syncytialization, the endoplasmic reticulum unfolded protein response, immune tolerance, angiogenesis, and vascular integrity. The simultaneous detection of let-7d-3p, miR-451a, and miR-1307-3p, resistant to the repeated freezing/thawing of blood serum samples, in combination with biochemical (b-hCG and PAPP-A) and ultrasound (UAPI) parameters, allowed us to develop a universal model for the prediction of ePE and lPE onset (FPR = 15.7% and FNR = 9.5%), which was validated using a test cohort of 48 patients and demonstrated false-positive results in 26.7% of cases and false negatives in 5.6% of cases. For comparison, the use of the generally accepted Astraia program in the analysis of the test cohort of patients led to worse results: FPR = 62.1% and FNR = 33.3%.
Collapse
Affiliation(s)
- Angelika V Timofeeva
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Ac. Oparina 4, 117997 Moscow, Russia
| | - Ivan S Fedorov
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Ac. Oparina 4, 117997 Moscow, Russia
| | - Yuliya V Sukhova
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Ac. Oparina 4, 117997 Moscow, Russia
| | - Tatyana Y Ivanets
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Ac. Oparina 4, 117997 Moscow, Russia
| | - Gennady T Sukhikh
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Ac. Oparina 4, 117997 Moscow, Russia
- Department of Obstetrics, Gynecology, Perinatology and Reproductology, First Moscow State Medical University Named after I.M. Sechenov, 119991 Moscow, Russia
| |
Collapse
|