1
|
Ding J, Su Y, Liu Y, Xu Y, Yang D, Wang X, Hao S, Zhou H, Li H. The role of CSTF2 in cancer: from technology to clinical application. Cell Cycle 2023; 22:2622-2636. [PMID: 38166492 PMCID: PMC10936678 DOI: 10.1080/15384101.2023.2299624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 12/03/2023] [Accepted: 12/20/2023] [Indexed: 01/04/2024] Open
Abstract
A protein called cleavage-stimulating factor subunit 2 (CSTF2, additionally called CSTF-64) binds RNA and is needed for the cleavage and polyadenylation of mRNA. CSTF2 is an important component subunit of the cleavage stimulating factor (CSTF), which is located on the X chromosome and encodes 557 amino acids. There is compelling evidence linking elevated CSTF2 expression to the pathological advancement of cancer and on its impact on the clinical aspects of the disease. The progression of cancers, including hepatocellular carcinoma, melanoma, prostate cancer, breast cancer, and pancreatic cancer, is correlated with the upregulation of CSTF2 expression. This review provides a fresh perspective on the investigation of the associations between CSTF2 and various malignancies and highlights current studies on the regulation of CSTF2. In particular, the mechanism of action and potential clinical applications of CSTF2 in cancer suggest that CSTF2 can serve as a new biomarker and individualized treatment target for a variety of cancer types.
Collapse
Affiliation(s)
- Jiaxiang Ding
- Clinical Trial Center of the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- School of Public Foundation, Bengbu Medical University, Bengbu, Anhui, China
| | - Yue Su
- Clinical Trial Center of the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- School of Public Foundation, Bengbu Medical University, Bengbu, Anhui, China
| | - Youru Liu
- The People’s Hospital of Bozhou, Bozhou, Anhui, China
| | - Yuanyuan Xu
- Clinical Trial Center of the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- School of Pharmacy, Bengbu Medical University, Bengbu, Anhui, China
| | - Dashuai Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province; School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Xuefeng Wang
- Clinical Trial Center of the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- School of Pharmacy, Bengbu Medical University, Bengbu, Anhui, China
| | - Shuli Hao
- The People’s Hospital of Bozhou, Bozhou, Anhui, China
| | - Huan Zhou
- Clinical Trial Center of the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- School of Public Foundation, Bengbu Medical University, Bengbu, Anhui, China
- School of Pharmacy, Bengbu Medical University, Bengbu, Anhui, China
| | - Hongtao Li
- Clinical Trial Center of the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| |
Collapse
|
2
|
Huang Y, Xu J, Xie C, Liao Y, Lin R, Zeng Y, Yu F. A Novel Gene Pair CSTF2/DPE2A Impacts Prognosis and Cell Cycle of Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:1639-1657. [PMID: 37791068 PMCID: PMC10544262 DOI: 10.2147/jhc.s413935] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC), one of the commonest cancers at present, possesses elevated mortality. This study explored the predictive value of CSTF2/PDE2A for HCC prognosis. Methods In this study, clinical information and RNA sequencing expression profiles of HCC patients were acquired from common databases. Kaplan-Meier curve compound with time-dependent ROC curve, nomogram model, and univariate/multivariate Cox analysis were carried out to access the prediction capacity of CSTF2/PDE2A. The immune status, tumor microenvironment, drug sensitivity, biological function and pathway between HCC and adjacent non-tumorous tissue were analyzed and compared. Finally, RT-qPCR, Western blot, and apoptosis assays were performed to verify the effect on HCC cells of CSTF2/PDE2A. Results The optimal cut-off value of CSTF2, PDE2A and CSTF2/PDE2A was 6.95, 0.95 and 3.63, respectively. In TCGA and ICGC cohorts, the high group of CSTF2/PDE2A presented higher OS compared to low group. The area under the curve (AUC) for OS at 1-, 2-, and 3-years predicted by CSTF2/PDE2A were 0.731/0.695, 0.713/0.732 and 0.689/0.755, higher than the counterparts of the single gene CSTF2 and PDE2A. Multivariate Cox analysis revealed that CSTF2/PDE2A (HR = 1.860/3.236, 95% CI = 1.265-2.733/1.575-6.645) was an independent prognostic factor for HCC. The OS nomogram model created according to five independent factors including CSTF2/PDE2A showed excellent capacity for HCC prognosis. Furthermore, the immune status of the CSTF2/PDE2A high group was deleted, cell cycle-related genes and chemotherapy resistance were increased. Finally, cell experiments revealed distinct differences in the proliferation, apoptosis, protein and mRNA expression of HCC cells after si-CSTF2 transfection compared with the negative control. Conclusion Taken together, the gene pair CSTF2/PDE2A is able to forecast the prognosis of HCC and regulates cell cycle, which is promising as a novel prognostic predictor of HCC.
Collapse
Affiliation(s)
- Yangjin Huang
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Jun Xu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Chunming Xie
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Yuejuan Liao
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Rong Lin
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Yuan Zeng
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Fujun Yu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
3
|
Xu Y, Yuan F, Sun Q, Zhao L, Hong Y, Tong S, Qi Y, Ye L, Hu P, Ye Z, Zhang S, Liu B, Chen Q. The RNA-binding protein CSTF2 regulates BAD to inhibit apoptosis in glioblastoma. Int J Biol Macromol 2023; 226:915-926. [PMID: 36521710 DOI: 10.1016/j.ijbiomac.2022.12.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
RNA-binding proteins (RBP) regulate several aspects of co- and post-transcriptional gene expression in cancer cells. CSTF2 is involved in the expression of many cellular mRNAs and involved in the 3'-end cleavage and polyadenylation of pre-mRNAs to terminate transcription. However, the role of CSTF2 in human glioblastoma (GBM) and the underlying mechanisms remain unclear. In the present study, CSTF2 was found to be upregulated in GBM, and its high expression predicted poor prognosis. Knockdown CSTF2 induced GBM cell apoptosis both in vitro and in vivo. Specific mechanism studies showed that CSTF2 unstabilized the mRNA of the BAD protein by shortening its 3' UTR. Additionally, an increase in the expression level of CSTF2 decreased the expression level of BAD. In conclusion, CSTF2 binds to the mRNA of the BAD protein to shorten its 3'UTR, which negatively affects the BAD mediated apoptosis and promotes GBM cell survival.
Collapse
Affiliation(s)
- Yang Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, People's Republic of China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Fanen Yuan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, People's Republic of China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Qian Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, People's Republic of China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Linyao Zhao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, People's Republic of China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Yu Hong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, People's Republic of China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Shiao Tong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, People's Republic of China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Yangzhi Qi
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, People's Republic of China
| | - Liguo Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, People's Republic of China
| | - Ping Hu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, People's Republic of China
| | - Zhang Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, People's Republic of China
| | - Si Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, People's Republic of China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, People's Republic of China.
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, 238 Jiefang Street, Wuhan, Hubei 430060, People's Republic of China.
| |
Collapse
|