1
|
Huang Z, Huang L, Ding J, Huang Y, Huang X, Li T. ILK inhibition reduces osteophyte formation through suppression of osteogenesis in BMSCs via Akt/GSK-3β/β-catenin pathway. Mol Biol Rep 2024; 51:421. [PMID: 38483756 DOI: 10.1007/s11033-024-09336-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/08/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Osteophyte development is a common characteristic of inflammatory skeletal diseases. Elevated osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) participates in pathological osteogenesis. Integrin-linked kinase (ILK) positively regulates the osteoblastic differentiation of osteoprogenitors, but whether the ILK blockage prevents osteophytes and its potential mechanism is still unknown. Furthermore, the low-dose tumor necrosis factor-α (TNF-α) promotes osteogenic differentiation, but a lack of study reports on the relationship between this cytokine and ILK. OSU-T315 is a small ILK inhibitor, which was used to determine the effect of ILK inhibition on osteogenesis and osteophyte formation. METHODS AND RESULTS The osteogenesis of BMSCs was evaluated using Alizarin red S staining, alkaline phosphatase, collagen type I alpha 2 chain, and bone gamma-carboxyglutamate protein. The expression and phosphorylation of protein were assessed through western blot. Immunofluorescence was employed to display the distribution of β-catenin. microCT, hematoxylin-eosin, and safranin O/fast green staining were utilized to observe the osteophyte formation in collagen antibody-induced arthritis mice. We found that ILK blockage significantly declined calcium deposition and osteoblastic markers in a dose- and time-dependent manner. Furthermore, it lowered osteogenesis in the TNF-α-induced inflammatory microenvironment by diminishing the effect of ILK and inactivating the Akt/ GSK-3β/ β-catenin pathway. Nuclear β-catenin was descended by OSU-T315 as well. Finally, the ILK suppression restrained osteophyte formation but not inflammation in vivo. CONCLUSIONS ILK inhibition lowered osteogenesis in TNF-α-related inflammatory conditions by deactivating the Akt/ GSK-3β/ β-catenin pathway. This may be a potential strategy to alleviate osteophyte development in addition to anti-inflammatory treatment.
Collapse
Affiliation(s)
- Zhixiang Huang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, No. 466, Xingangzhong Road, Guangzhou, 510317, China
| | - Lixin Huang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, No. 466, Xingangzhong Road, Guangzhou, 510317, China
- Department of Rheumatology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiali Ding
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, No. 466, Xingangzhong Road, Guangzhou, 510317, China
- Guangdong Medical University, Zhanjiang, China
| | - Yukai Huang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, No. 466, Xingangzhong Road, Guangzhou, 510317, China
| | - Xuechan Huang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, No. 466, Xingangzhong Road, Guangzhou, 510317, China
| | - Tianwang Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, No. 466, Xingangzhong Road, Guangzhou, 510317, China.
- Guangdong Medical University, Zhanjiang, China.
- Department of Rheumatology and Immunology, Zhaoqing Central People's Hospital, Zhaoqing, China.
| |
Collapse
|
2
|
Zhang W, Zhang M, Sun M, Hu M, Yu M, Sun J, Zhang X, Du B. Metabolomics-transcriptomics joint analysis: unveiling the dysregulated cell death network and developing a diagnostic model for high-grade neuroblastoma. Front Immunol 2024; 14:1345734. [PMID: 38239355 PMCID: PMC10794662 DOI: 10.3389/fimmu.2023.1345734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024] Open
Abstract
High-grade neuroblastoma (HG-NB) exhibits a significantly diminished survival rate in comparison to low-grade neuroblastoma (LG-NB), primarily attributed to the mechanism of HG-NB is unclear and the lacking effective therapeutic targets and diagnostic model. Therefore, the current investigation aims to study the dysregulated network between HG-NB and LG-NB based on transcriptomics and metabolomics joint analysis. Meanwhile, a risk diagnostic model to distinguish HG-NB and LG-NB was also developed. Metabolomics analysis was conducted using plasma samples obtained from 48 HG-NB patients and 36 LG-NB patients. A total of 39 metabolites exhibited alterations, with 20 showing an increase and 19 displaying a decrease in HG-NB. Additionally, transcriptomics analysis was performed on NB tissue samples collected from 31 HG-NB patients and 20 LG-NB patients. Results showed that a significant alteration was observed in a total of 1,199 mRNAs in HG-NB, among which 893 were upregulated while the remaining 306 were downregulated. In particular, the joint analysis of both omics data revealed three aberrant pathways, namely the cAMP signaling pathway, PI3K-Akt signaling pathway, and TNF signaling pathway, which were found to be associated with cell death. Notably, a diagnostic model for HG-NB risk classification was developed based on the genes MGST1, SERPINE1, and ERBB3 with an area under the receiver operating characteristic curve of 0.915. In the validation set, the sensitivity and specificity were determined to be 75.0% and 80.0%, respectively.
Collapse
Affiliation(s)
- Wancun Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Children’s Genetics and Metabolic Diseases, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Mengxin Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Meng Sun
- Henan Key Laboratory of Children’s Genetics and Metabolic Diseases, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Minghui Hu
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Muchun Yu
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Jushan Sun
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xianwei Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Bang Du
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Children’s Genetics and Metabolic Diseases, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|