1
|
Xie L, Li W, Li Y. mir-744-5p inhibits cell growth and angiogenesis in osteosarcoma by targeting NFIX. J Orthop Surg Res 2024; 19:485. [PMID: 39152460 PMCID: PMC11330078 DOI: 10.1186/s13018-024-04947-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Osteosarcoma (OS) is a malignant bone tumor that commonly occurs in children and adolescents under the age of 20. Dysregulation of microRNAs (miRNAs) is an important factor in the occurrence and progression of OS. MicroRNA miR-744-5p is aberrantly expressed in various tumors. However, its roles and molecular targets in OS remain unclear. METHODS Differentially expressed miRNAs in OS were analyzed using the Gene Expression Omnibus dataset GSE65071, and the potential hub miRNA was identified through weighted gene co-expression network analysis. Quantitative real-time PCR (qRT-PCR) was used to detect the expression of miR-744-5p in OS cell lines. In vitro experiments, including CCK-8 assays, colony formation assays, flow cytometry apoptosis assays, and tube formation assays, were performed to explore the effects of miR-744-5p on OS cell biological behaviors. The downstream target genes of miR-744-5p were predicted through bioinformatics, and the binding sites were validated by a dual-luciferase reporter assay. RESULTS The lowly expressed miRNA, miR-744-5p, was identified as a hub miRNA involved in OS progression through bioinformatic analysis. Nuclear factor I X (NFIX) was confirmed as a direct target for miR-744-5p in OS. In vitro studies revealed that overexpression of miR-744-5p could restrain the growth of OS cells, whereas miR-744-5p inhibition showed the opposite effect. It was also observed that treatment with the conditioned medium from miR-744-5p-overexpressed OS cells led to poorer proliferation and angiogenesis in human umbilical vein endothelial cells (HUVECs). Furthermore, NFIX overexpression restored the suppression effects of miR-744-5p overexpression on OS cell growth and HUVECs angiogenesis. CONCLUSION Our results indicated that miR-744-5p is a potential tumor-suppressive miRNA in OS progression by targeting NFIX to restrain the growth of OS cells and angiogenesis in HUVECs.
Collapse
Affiliation(s)
- Lin Xie
- Department of Rehabilitation Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, 264000, China
| | - Wei Li
- Department of Rehabilitation Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, 264000, China
| | - Yu Li
- First Ward of Trauma Orthopaedics, Yantai Shan Hospital, Yantai, Shandong, 264003, China.
| |
Collapse
|
2
|
Imamura T, Komatsu S, Nishibeppu K, Kiuchi J, Ohashi T, Konishi H, Shiozaki A, Yamamoto Y, Moriumura R, Ikoma H, Ochiai T, Otsuji E. Urinary microRNA-210-3p as a novel and non-invasive biomarker for the detection of pancreatic cancer, including intraductal papillary mucinous carcinoma. BMC Cancer 2024; 24:907. [PMID: 39069624 DOI: 10.1186/s12885-024-12676-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND This study aims to explore novel microRNAs in urine for screening and predicting clinical characteristics in pancreatic cancer (PC) patients using a microRNA array-based approach. METHODS We used the Toray® 3D-Gene microRNA array-based approach to compare urinary levels between PC patients and healthy volunteers. RESULTS (1) Four oncogenic microRNAs (miR-744-5p, miR-572, miR-210-3p, and miR-575) that were highly upregulated in the urine of PC patients compared to healthy individuals were identified by comprehensive microRNA array analysis. (2) Test-scale analysis by quantitative RT-PCR for each group of 20 cases showed that miR-210-3p was significantly upregulated in the urine of PC patients compared to healthy individuals (P = 0.009). (3) Validation analysis (58 PC patients and 35 healthy individuals) confirmed that miR-210-3p was significantly upregulated in the urine of PC patients compared to healthy individuals (P < 0.001, area under the receiver operating characteristic curve = 0.79, sensitivity: 0.828, specificity: 0.743). We differentiated PC patients into invasive ductal carcinoma (IDCa) and intraductal papillary mucinous carcinoma (IPMC) groups. In addition to urinary miR-210-3p levels being upregulated in IDCa over healthy individuals (P = 0.009), urinary miR-210-3p levels were also elevated in IPMC over healthy individuals (P = 0.0018). Urinary miR-210-3p can differentiate IPMC from healthy individuals by a cutoff of 8.02 with an AUC value of 0.762, sensitivity of 94%, and specificity of 63%. (4) To test whether urinary miR210-3p levels reflected plasma miR-210-3p levels, we examined the correlation between urinary and plasma levels. Spearman's correlation analysis showed a moderate positive correlation (ρ = 0.64, P = 0.005) between miR-210-3p expression in plasma and urine. CONCLUSIONS Urinary miR-210-3p is a promising, non-invasive diagnostic biomarker of PC, including IPMC. TRIAL REGISTRATION Not applicable.
Collapse
MESH Headings
- Humans
- MicroRNAs/urine
- MicroRNAs/blood
- MicroRNAs/genetics
- Female
- Male
- Biomarkers, Tumor/urine
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/blood
- Pancreatic Neoplasms/urine
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/diagnosis
- Pancreatic Neoplasms/blood
- Middle Aged
- Aged
- Adenocarcinoma, Mucinous/urine
- Adenocarcinoma, Mucinous/genetics
- Adenocarcinoma, Mucinous/diagnosis
- ROC Curve
- Case-Control Studies
- Gene Expression Regulation, Neoplastic
- Adult
- Carcinoma, Pancreatic Ductal/urine
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/diagnosis
- Carcinoma, Pancreatic Ductal/blood
Collapse
Affiliation(s)
- Taisuke Imamura
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii- cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii- cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Keiji Nishibeppu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii- cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Jun Kiuchi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii- cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Takuma Ohashi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii- cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii- cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii- cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yusuke Yamamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii- cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Ryo Moriumura
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii- cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hisashi Ikoma
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii- cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Toshiya Ochiai
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii- cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii- cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
3
|
Hou CH, Chen WL, Lin CY. Targeting nerve growth factor-mediated osteosarcoma metastasis: mechanistic insights and therapeutic opportunities using larotrectinib. Cell Death Dis 2024; 15:381. [PMID: 38816365 PMCID: PMC11139949 DOI: 10.1038/s41419-024-06752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
Osteosarcoma (OS) therapy presents numerous challenges, due largely to a low survival rate following metastasis onset. Nerve growth factor (NGF) has been implicated in the metastasis and progression of various cancers; however, the mechanism by which NGF promotes metastasis in osteosarcoma has yet to be elucidated. This study investigated the influence of NGF on the migration and metastasis of osteosarcoma patients (88 cases) as well as the underlying molecular mechanisms, based on RNA-sequencing and gene expression data from a public database (TARGET-OS). In osteosarcoma patients, the expression of NGF was significantly higher than that of other growth factors. This observation was confirmed in bone tissue arrays from 91 osteosarcoma patients, in which the expression levels of NGF and matrix metallopeptidase-2 (MMP-2) protein were significantly higher than in normal bone, and strongly correlated with tumor stage. In summary, NGF is positively correlated with MMP-2 in human osteosarcoma tissue and NGF promotes osteosarcoma cell metastasis by upregulating MMP-2 expression. In cellular experiments using human osteosarcoma cells (143B and MG63), NGF upregulated MMP-2 expression and promoted wound healing, cell migration, and cell invasion. Pre-treatment with MEK and ERK inhibitors or siRNA attenuated the effects of NGF on cell migration and invasion. Stimulation with NGF was shown to promote phosphorylation along the MEK/ERK signaling pathway and decrease the expression of microRNA-92a-1-5p (miR-92a-1-5p). In in vivo experiments involving an orthotopic mouse model, the overexpression of NGF enhanced the effects of NGF on lung metastasis. Note that larotrectinib (a tropomyosin kinase receptor) strongly inhibited the effect of NGF on lung metastasis. In conclusion, it appears that NGF promotes MMP-2-dependent cell migration by inhibiting the effects of miR-92a-1-5p via the MEK/ERK signaling cascade. Larotrectinib emerged as a potential drug for the treatment of NGF-mediated metastasis in osteosarcoma.
Collapse
Affiliation(s)
- Chun-Han Hou
- Department of Orthopedic Surgery, National Taiwan University Hospital, No. 1, Jen-Ai Road, Taipei, 100, Taiwan, ROC
| | - Wei-Li Chen
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, 111, Taiwan, ROC
| | - Chih-Yang Lin
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, 111, Taiwan, ROC.
| |
Collapse
|
4
|
Ding Z, Jiang M, Qian J, Gu D, Bai H, Cai M, Yao D. Role of transforming growth factor-β in peripheral nerve regeneration. Neural Regen Res 2024; 19:380-386. [PMID: 37488894 PMCID: PMC10503632 DOI: 10.4103/1673-5374.377588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/29/2023] [Accepted: 04/27/2023] [Indexed: 07/26/2023] Open
Abstract
Injuries caused by trauma and neurodegenerative diseases can damage the peripheral nervous system and cause functional deficits. Unlike in the central nervous system, damaged axons in peripheral nerves can be induced to regenerate in response to intrinsic cues after reprogramming or in a growth-promoting microenvironment created by Schwann cells. However, axon regeneration and repair do not automatically result in the restoration of function, which is the ultimate therapeutic goal but also a major clinical challenge. Transforming growth factor (TGF) is a multifunctional cytokine that regulates various biological processes including tissue repair, embryo development, and cell growth and differentiation. There is accumulating evidence that TGF-β family proteins participate in peripheral nerve repair through various factors and signaling pathways by regulating the growth and transformation of Schwann cells; recruiting specific immune cells; controlling the permeability of the blood-nerve barrier, thereby stimulating axon growth; and inhibiting remyelination of regenerated axons. TGF-β has been applied to the treatment of peripheral nerve injury in animal models. In this context, we review the functions of TGF-β in peripheral nerve regeneration and potential clinical applications.
Collapse
Affiliation(s)
- Zihan Ding
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Maorong Jiang
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jiaxi Qian
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Dandan Gu
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Huiyuan Bai
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Min Cai
- Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Dengbing Yao
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
5
|
Li J, Ramzan F, Zhong G. Investigating novel biomarkers in uterine corpus endometrial carcinoma: in silico analysis and clinical specimens validation via RT-qPCR and immunohistochemistry. Am J Cancer Res 2023; 13:4376-4400. [PMID: 37818076 PMCID: PMC10560950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/17/2023] [Indexed: 10/12/2023] Open
Abstract
The rising incidence and mortality rate of Uterine Corpus Endometrial Carcinoma (UCEC) pose significant health concerns. CC and CXC chemokines have been linked to tumorigenesis and cancer progression. Recognizing the growing significance of CC and CXC chemokines' diagnostic and prognostic significance in diverse cancer types, our objective was to comprehensively analyze the diagnostic and prognostic values of hub genes from the CC and CXC chemokines in UCEC, utilizing both in silico and clinical samples and cell lines-based approaches. In silico analyses include STRING, Cytoscape, Cytohubba, The Cancer Genome Atlas (TCGA) datasets analysis via the UALCAN, GEPIA, OncoDB, and MuTarget, SurvivalGenie, MEXPRESS, cBioPoratal, TIMER, ENCORI, and DrugBank. Meanwhile, clinical samples and cell lines based analyses include Reverse transcription-quantitative polymerase chain reaction (RT-qPCR), targeted bisulfite sequencing (bisulfite-seq) analysis, and immunohistochemistry (IHC). Through present study, we identified CCL25 (CC motif chemokine ligand 25), CXCL10 (C-X-C motif chemokine ligand 10), CXCL12 (C-X-C motif chemokine ligand 12), and CXCL16 (C-X-C motif chemokine ligand 16) as crucial hub genes among the CC and CXC chemokines. Analyzing the expression data from TCGA, we observed a significant up-regulation of CCL25, CXCL10, and CXCL16 in UCEC samples compared to controls. In contrast, we noted a significant down-regulation of CXCL12 expression in UCEC samples. On clinical UCEC samples and cell lines analysis, the significant higher expression of CCL25, CXCL10, and CXCL16 and significant lower expression of CXCL12 were also denoted in UCEC samples than the controls via RT-qPCR and IHC analyses. Moreover, in silico analysis also confirmed the abnormal promoter methylation levels of the hub genes in TCGA UCEC samples, which was later validated by the clinical samples using targeted based bisulfite-seq analysis. In addition, various additional aspects of the CCL25, CXCL10, CXCL12, and CXCL16 have also been uncovered in UCEC during the present study. Our findings offer novel insights that contribute to the clinical utility of CCL25, CXCL10, CXCL12, and CXCL16 chemokines as potential diagnostic and prognostic biomarkers in UCEC.
Collapse
Affiliation(s)
- Jie Li
- Health Management Center, The Second Affiliated Hospital of Hainan Medical UniversityHaikou 570311, Hainan, China
| | - Faiqah Ramzan
- Gomal Center of Bio-Chemistry and Biotechnology (GCBB), Gomal UniversityDera Ismail Khan 29050, Pakistan
| | - Guiping Zhong
- Health Management Center, The Second Affiliated Hospital of Hainan Medical UniversityHaikou 570311, Hainan, China
| |
Collapse
|
6
|
Dong Z, Liao Z, He Y, Wu C, Meng Z, Qin B, Xu G, Li Z, Sun T, Wen Y, Li G. Advances in the Biological Functions and Mechanisms of miRNAs in the Development of Osteosarcoma. Technol Cancer Res Treat 2022; 21:15330338221117386. [PMID: 35950243 PMCID: PMC9379803 DOI: 10.1177/15330338221117386] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Osteosarcoma is one of the most common primary malignant bone tumors, mainly
occurring in children and adolescents, and is characterized by high morbidity
and poor prognosis. MicroRNAs, a class of noncoding RNAs consisting of 19 to 25
nucleotides, are involved in cell proliferation, invasion, metastasis, and
apoptosis to regulate the development and progression of osteosarcoma. Studies
have found that microRNAs are closely related to the diagnosis, treatment, and
prognosis of osteosarcoma patients and have an important role in improving drug
resistance in osteosarcoma. This paper reviews the role of microRNAs in the
pathogenesis of osteosarcoma and their clinical value, aiming to provide a new
research direction for diagnosing and treating osteosarcoma and achieving a
better prognosis.
Collapse
Affiliation(s)
- Zihe Dong
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Zhipeng Liao
- The Second School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Yonglin He
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Chengye Wu
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Zixiang Meng
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Baolong Qin
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Ge Xu
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Zeyang Li
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Tianxin Sun
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Yuyan Wen
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Guangjie Li
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|