1
|
Broce IJ, Sirkis DW, Nillo RM, Bonham LW, Lee SE, Miller BL, Castruita PA, Sturm VE, Sugrue LS, Desikan RS, Yokoyama JS. C9orf72 gene networks in the human brain correlate with cortical thickness in C9-FTD and implicate vulnerable cell types. Front Neurosci 2024; 18:1258996. [PMID: 38469573 PMCID: PMC10925697 DOI: 10.3389/fnins.2024.1258996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/15/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction A hexanucleotide repeat expansion (HRE) intronic to chromosome 9 open reading frame 72 (C9orf72) is recognized as the most common genetic cause of amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and ALS-FTD. Identifying genes that show similar regional co-expression patterns to C9orf72 may help identify novel gene targets and biological mechanisms that mediate selective vulnerability to ALS and FTD pathogenesis. Methods We leveraged mRNA expression data in healthy brain from the Allen Human Brain Atlas to evaluate C9orf72 co-expression patterns. To do this, we correlated average C9orf72 expression values in 51 regions across different anatomical divisions (cortex, subcortex, and cerebellum) with average gene expression values for 15,633 protein-coding genes, including 54 genes known to be associated with ALS, FTD, or ALS-FTD. We then performed imaging transcriptomic analyses to evaluate whether the identified C9orf72 co-expressed genes correlated with patterns of cortical thickness in symptomatic C9orf72 pathogenic HRE carriers (n = 19) compared to controls (n = 23). Lastly, we explored whether genes with significant C9orf72 imaging transcriptomic correlations (i.e., "C9orf72 imaging transcriptomic network") were enriched in specific cell populations in the brain and enriched for specific biological and molecular pathways. Results A total of 2,120 genes showed an anatomical distribution of gene expression in the brain similar to C9orf72 and significantly correlated with patterns of cortical thickness in C9orf72 HRE carriers. This C9orf72 imaging transcriptomic network was differentially expressed in cell populations previously implicated in ALS and FTD, including layer 5b cells, cholinergic neurons in the spinal cord and brainstem and medium spiny neurons of the striatum, and was enriched for biological and molecular pathways associated with protein ubiquitination, autophagy, cellular response to DNA damage, endoplasmic reticulum to Golgi vesicle-mediated transport, among others. Conclusion Considered together, we identified a network of C9orf72 associated genes that may influence selective regional and cell-type-specific vulnerabilities in ALS/FTD.
Collapse
Affiliation(s)
- Iris J. Broce
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
- Department of Neurosciences, University of California San Diego, San Diego, CA, United States
| | - Daniel W. Sirkis
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Ryan M. Nillo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Luke W. Bonham
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Suzee E. Lee
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Bruce L. Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Patricia A. Castruita
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Virginia E. Sturm
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
- Global Brain Health Institute, University of California San Francisco, San Francisco, CA, United States
| | - Leo S. Sugrue
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Rahul S. Desikan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Jennifer S. Yokoyama
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
- Global Brain Health Institute, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
2
|
Eisen A, Vucic S, Mitsumoto H. History of ALS and the competing theories on pathogenesis: IFCN handbook chapter. Clin Neurophysiol Pract 2023; 9:1-12. [PMID: 38213309 PMCID: PMC10776891 DOI: 10.1016/j.cnp.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disorder of the human motor system, first described in the 19th Century. The etiology of ALS appears to be multifactorial, with a complex interaction of genetic, epigenetic, and environmental factors underlying the onset of disease. Importantly, there are no known naturally occurring animal models, and transgenic mouse models fail to faithfully reproduce ALS as it manifests in patients. Debate as to the site of onset of ALS remain, with three competing theories proposed, including (i) the dying-forward hypothesis, whereby motor neuron degeneration is mediated by hyperexcitable corticomotoneurons via an anterograde transsynaptic excitotoxic mechanism, (ii) dying-back hypothesis, proposing the ALS begins in the peripheral nervous system with a toxic factor(s) retrogradely transported into the central nervous system and mediating upper motor neuron dysfunction, and (iii) independent hypothesis, suggesting that upper and lower motor neuron degenerated independently. Transcranial magnetic stimulation studies, along with pathological and genetic findings have supported the dying forward hypothesis theory, although the science is yet to be settled. The review provides a historical overview of ALS, discusses phenotypes and likely pathogenic mechanisms.
Collapse
Affiliation(s)
- Andrew Eisen
- Division of Neurology, Department of Medicine, University of British Columbia, Canada
| | - Steve Vucic
- Director Brain and Nerve Research Center, Clinical School, University of Sydney, Australia
| | - Hiroshi Mitsumoto
- Wesley J. Howe Professor of Neurology, Columbia University, The Neurological Institute of New York, and New York-Presbyterian Hospital/Columbia University Medical Center, United States
| |
Collapse
|
3
|
Abstract
Although the past two decades have produced exciting discoveries in the genetics and pathology of amyotrophic lateral sclerosis (ALS), progress in developing an effective therapy remains slow. This review summarizes the critical discoveries and outlines the advances in disease characterization, diagnosis, imaging, and biomarkers, along with the current status of approaches to ALS care and treatment. Additional knowledge of the factors driving disease progression and heterogeneity will hopefully soon transform the care for patients with ALS into an individualized, multi-prong approach able to prevent disease progression sufficiently to allow for a dignified life with limited disability.
Collapse
Affiliation(s)
- Hristelina Ilieva
- Jefferson Weinberg ALS Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Justin Kwan
- National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Broce IJ, Sirkis DW, Nillo RM, Bonham LW, Lee SE, Miller B, Castruita P, Sturm VE, Sugrue LS, Desikan RS, Yokoyama JS. C9orf72 gene networks in the human brain correlate with cortical thickness in C9-FTD and implicate vulnerable cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.17.549377. [PMID: 37503230 PMCID: PMC10370095 DOI: 10.1101/2023.07.17.549377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Introduction A hexanucleotide repeat expansion (HRE) intronic to chromosome 9 open reading frame 72 (C9orf72) is recognized as the most common genetic cause of amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and ALS-FTD. Identifying genes that show similar regional co-expression patterns to C9orf72 may help identify novel gene targets and biological mechanisms that mediate selective vulnerability to ALS and FTD pathogenesis. Methods We leveraged mRNA expression data in healthy brain from the Allen Human Brain Atlas to evaluate C9orf72 co-expression patterns. To do this, we correlated average C9orf72 expression values in 51 regions across different anatomical divisions (cortex, subcortex, cerebellum) with average gene expression values for 15,633 protein-coding genes, including 50 genes known to be associated with ALS, FTD, or ALS-FTD. We then evaluated whether the identified C9orf72 co-expressed genes correlated with patterns of cortical thickness in symptomatic C9orf72 pathogenic HRE carriers (n=19). Lastly, we explored whether genes with significant C9orf72 radiogenomic correlations (i.e., 'C9orf72 gene network') were enriched in specific cell populations in the brain and enriched for specific biological and molecular pathways. Results A total of 1,748 genes showed an anatomical distribution of gene expression in the brain similar to C9orf72 and significantly correlated with patterns of cortical thickness in C9orf72 HRE carriers. This C9orf72 gene network was differentially expressed in cell populations previously implicated in ALS and FTD, including layer 5b cells, cholinergic motor neurons in the spinal cord, and medium spiny neurons of the striatum, and was enriched for biological and molecular pathways associated with multiple neurotransmitter systems, protein ubiquitination, autophagy, and MAPK signaling, among others. Conclusions Considered together, we identified a network of C9orf72-associated genes that may influence selective regional and cell-type-specific vulnerabilities in ALS/FTD.
Collapse
Affiliation(s)
- Iris J. Broce
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Daniel W. Sirkis
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Ryan M. Nillo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Luke W. Bonham
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Suzee E. Lee
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Bruce Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Patricia Castruita
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Virginia E. Sturm
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, and Trinity College Dublin, Dublin, Ireland
| | - Leo S. Sugrue
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Rahul S. Desikan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Jennifer S. Yokoyama
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Castelnovo V, Canu E, De Mattei F, Filippi M, Agosta F. Basal ganglia alterations in amyotrophic lateral sclerosis. Front Neurosci 2023; 17:1133758. [PMID: 37090799 PMCID: PMC10113480 DOI: 10.3389/fnins.2023.1133758] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/09/2023] [Indexed: 04/09/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) has traditionally been associated with brain damage involving the primary motor cortices and corticospinal tracts. In the recent decades, most of the research studies in ALS have focused on extra-motor and subcortical brain regions. The aim of these studies was to detect additional biomarkers able to support the diagnosis and to predict disease progression. The involvement of the frontal cortices, mainly in ALS cases who develop cognitive and/or behavioral impairment, is amply recognized in the field. A potential involvement of fronto-temporal and fronto-striatal connectivity changes in the disease evolution has also been reported. On this latter regard, there is still a shortage of studies which investigated basal ganglia (BG) alterations and their role in ALS clinical manifestation and progression. The present review aims to provide an overview on the magnetic resonance imaging studies reporting structural and/or functional BG alterations in patients with ALS, to clarify the role of BG damage in the disease clinical evolution and to propose potential future developments in this field.
Collapse
Affiliation(s)
- Veronica Castelnovo
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Filippo De Mattei
- ALS Center, SC Neurologia 1U, AOU Città della Salute e della Scienza of Torino, Turin, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- *Correspondence: Federica Agosta,
| |
Collapse
|
6
|
McKenna MC, Lope J, Bede P, Tan EL. Thalamic pathology in frontotemporal dementia: Predilection for specific nuclei, phenotype-specific signatures, clinical correlates, and practical relevance. Brain Behav 2023; 13:e2881. [PMID: 36609810 PMCID: PMC9927864 DOI: 10.1002/brb3.2881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Frontotemporal dementia (FTD) phenotypes are classically associated with distinctive cortical atrophy patterns and regional hypometabolism. However, the spectrum of cognitive and behavioral manifestations in FTD arises from multisynaptic network dysfunction. The thalamus is a key hub of several corticobasal and corticocortical circuits. The main circuits relayed via the thalamic nuclei include the dorsolateral prefrontal circuit, the anterior cingulate circuit, and the orbitofrontal circuit. METHODS In this paper, we have reviewed evidence for thalamic pathology in FTD based on radiological and postmortem studies. Original research papers were systematically reviewed for preferential involvement of specific thalamic regions, for phenotype-associated thalamic disease burden patterns, characteristic longitudinal changes, and genotype-associated thalamic signatures. Moreover, evidence for presymptomatic thalamic pathology was also reviewed. Identified papers were systematically scrutinized for imaging methods, cohort sizes, clinical profiles, clinicoradiological associations, and main anatomical findings. The findings of individual research papers were amalgamated for consensus observations and their study designs further evaluated for stereotyped shortcomings. Based on the limitations of existing studies and conflicting reports in low-incidence FTD variants, we sought to outline future research directions and pressing research priorities. RESULTS FTD is associated with focal thalamic degeneration. Phenotype-specific thalamic traits mirror established cortical vulnerability patterns. Thalamic nuclei mediating behavioral and language functions are preferentially involved. Given the compelling evidence for considerable thalamic disease burden early in the course of most FTD subtypes, we also reflect on the practical relevance, diagnostic role, prognostic significance, and monitoring potential of thalamic metrics in FTD. CONCLUSIONS Cardinal manifestations of FTD phenotypes are likely to stem from thalamocortical circuitry dysfunction and are not exclusively driven by focal cortical changes.
Collapse
Affiliation(s)
- Mary Clare McKenna
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Neurology, St James's Hospital, Dublin, Ireland
| | - Jasmin Lope
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Neurology, St James's Hospital, Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
7
|
Li H, Xiong L, Xie T, Wang Z, Li T, Zhang H, Wang L, Yu X, Wang H. Incongruent gray matter atrophy and functional connectivity of striatal subregions in behavioral variant frontotemporal dementia. Cereb Cortex 2022; 33:6103-6110. [PMID: 36563002 DOI: 10.1093/cercor/bhac487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 12/24/2022] Open
Abstract
Previous studies on the striatum demonstrated that it is involved in the regulation of cognitive function and psychiatric symptoms in patients with behavioral variant frontotemporal dementia (bvFTD). Multiple lines of evidence have shown that striatal subregions have their own functions. However, the results of the existing studies on striatal subregions are inconsistent and unclear. In this study, we found that structural imaging analysis revealed that the bvFTD patients had smaller volumes of striatal subregions than the controls. We found that the degree of atrophy varied across the striatal subregions. Additionally, the right striatal subregions were significantly more atrophic than the left in bvFTD. Functional imaging analysis revealed that bvFTD patients exhibited different changed patterns of resting-state functional connectivity (RSFC) when striatal subregions were selected as regions of interest (ROI). The RSFC extending range on the right ROIs was more significant than on the left in the same subregion. Interestingly, the RSFC of the subregions extending to the insula were consistent. In addition, the left dorsolateral putamen may be involved in executive function regulation. This suggests that incongruence in striatal subregions may be critical to the bvFTD characteristics.
Collapse
Affiliation(s)
- Huizi Li
- Dementia Care & Research Center, Beijing Dementia Key Lab, Peking University Institute of Mental Health (Sixth Hospital), Beijing 100191, China.,National Clinical Research Center for Mental Disorders (Peking University), National Health Commission Key Laboratory of Mental Health, Beijing 100191, China
| | - Lingchuan Xiong
- Dementia Care & Research Center, Beijing Dementia Key Lab, Peking University Institute of Mental Health (Sixth Hospital), Beijing 100191, China.,National Clinical Research Center for Mental Disorders (Peking University), National Health Commission Key Laboratory of Mental Health, Beijing 100191, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Teng Xie
- Dementia Care & Research Center, Beijing Dementia Key Lab, Peking University Institute of Mental Health (Sixth Hospital), Beijing 100191, China.,National Clinical Research Center for Mental Disorders (Peking University), National Health Commission Key Laboratory of Mental Health, Beijing 100191, China
| | - Zhijiang Wang
- Dementia Care & Research Center, Beijing Dementia Key Lab, Peking University Institute of Mental Health (Sixth Hospital), Beijing 100191, China.,National Clinical Research Center for Mental Disorders (Peking University), National Health Commission Key Laboratory of Mental Health, Beijing 100191, China
| | - Tao Li
- Dementia Care & Research Center, Beijing Dementia Key Lab, Peking University Institute of Mental Health (Sixth Hospital), Beijing 100191, China.,National Clinical Research Center for Mental Disorders (Peking University), National Health Commission Key Laboratory of Mental Health, Beijing 100191, China
| | - Haifeng Zhang
- Dementia Care & Research Center, Beijing Dementia Key Lab, Peking University Institute of Mental Health (Sixth Hospital), Beijing 100191, China.,National Clinical Research Center for Mental Disorders (Peking University), National Health Commission Key Laboratory of Mental Health, Beijing 100191, China
| | - Luchun Wang
- Dementia Care & Research Center, Beijing Dementia Key Lab, Peking University Institute of Mental Health (Sixth Hospital), Beijing 100191, China.,National Clinical Research Center for Mental Disorders (Peking University), National Health Commission Key Laboratory of Mental Health, Beijing 100191, China
| | - Xin Yu
- Dementia Care & Research Center, Beijing Dementia Key Lab, Peking University Institute of Mental Health (Sixth Hospital), Beijing 100191, China.,National Clinical Research Center for Mental Disorders (Peking University), National Health Commission Key Laboratory of Mental Health, Beijing 100191, China
| | - Huali Wang
- Dementia Care & Research Center, Beijing Dementia Key Lab, Peking University Institute of Mental Health (Sixth Hospital), Beijing 100191, China.,National Clinical Research Center for Mental Disorders (Peking University), National Health Commission Key Laboratory of Mental Health, Beijing 100191, China
| |
Collapse
|
8
|
Chen Z, Ma J, Liu L, Liu S, Zhang J, Chu M, Wang Z, Chan P, Wu L. Alterations of Striatal Subregions in a Prion Protein Gene V180I Mutation Carrier Presented as Frontotemporal Dementia With Parkinsonism. Front Aging Neurosci 2022; 14:830602. [PMID: 35493933 PMCID: PMC9053668 DOI: 10.3389/fnagi.2022.830602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To explore the roles of striatal subdivisions in the pathogenesis of frontotemporal dementia with parkinsonism (FTDP) in a patient resulting from prion protein gene (PRNP) mutation. Methods This patient received clinical interviews and underwent neuropsychological assessments, genetic testing, [18F]-fluorodeoxyglucose positron emission tomography ([18F]-FDG PET)/MRI, and [18F]-dihydrotetrabenazine positron emission tomography ([18F]-DTBZ PET)/CT. Region-of-interest analysis was conducted concerning metabolism, and dopamine transport function between this patient and 12 controls, focusing on the striatum subregions according to the Oxford-GSK-Imanova Striatal Connectivity Atlas. Results A 64-year-old man initially presented with symptoms of motor dysfunction and subsequently behavioral and personality changes. FTDP was initially suspected. Sequence analysis disclosed a valine to isoleucine at codon 180 in PRNP. Compared to controls, this patient had a severe reduction (> 2SD) of standard uptake value ratio (SUVR) in the limbic and executive subregions but relative retention of metabolism in rostral motor and caudal motor subregions using [18F]-FDG PET/MRI, and the SUVR decreased significantly across the striatal in [18F]-DTBZ PET/CT, especially in the rostral motor and caudal motor subregions. Conclusion The alteration of frontal striatal loops may be involved in cognitive impairment in FTDP, and the development of parkinsonism in FTDP may be primarily due to the involvement of the presynaptic nigrostriatal loops in PRNP V180I mutation.
Collapse
Affiliation(s)
- Zhongyun Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jinghong Ma
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shuying Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Min Chu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhen Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Piu Chan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
| |
Collapse
|
9
|
Ogura A, Kawabata K, Watanabe H, Choy SW, Bagarinao E, Kato T, Imai K, Masuda M, Ohdake R, Hara K, Nakamura R, Atsuta N, Nakamura T, Katsuno M, Sobue G. Fiber-specific white matter analysis reflects upper motor neuron impairment in amyotrophic lateral sclerosis. Eur J Neurol 2021; 29:432-440. [PMID: 34632672 DOI: 10.1111/ene.15136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/30/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE To clarify the relationship between fiber-specific white matter changes in amyotrophic lateral sclerosis (ALS) and clinical signs of upper motor neuron (UMN) involvement, we performed a fixel-based analysis (FBA), a novel framework for diffusion-weighted imaging analysis. METHODS We enrolled 96 participants, including 48 nonfamilial ALS patients and 48 age- and sex-matched healthy controls (HCs), in this study and conducted whole-brain FBA and voxel-based morphometry analysis. We compared the fiber density (FD), fiber morphology (fiber cross-section [FC]), and a combined index of FD and FC (FDC) between the ALS and HC groups. We performed a tract-of-interest analysis to extract FD values across the significant regions in the whole-brain analysis. Then, we evaluated the associations between FD values and clinical variables. RESULTS The bilateral corticospinal tracts (CSTs) and the corpus callosum (CC) showed reduced FD and FDC in ALS patients compared with HCs (p < 0.05, familywise error-corrected), and the comparison of FCs revealed no region that was significantly different from another. Voxel-based morphometry showed cortical volume reduction in the regions, including the primary motor area. Clinical scores showed correlations with FD values in the CSTs (UMN score: rho = -0.530, p < 0.001; central motor conduction time [CMCT] in the upper limb: rho = -0.474, p = 0.008; disease duration: rho = -0.383, p = 0.007; ALS Functional Rating Scale-Revised: rho = 0.340, p = 0.018). In addition, patients whose CMCT was not calculated due to unevoked waves also showed FD reduction in the CSTs. CONCLUSIONS Our findings suggest that FD values in the CST estimated via FBA can be potentially used in evaluating UMN impairments.
Collapse
Affiliation(s)
- Aya Ogura
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuya Kawabata
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hirohisa Watanabe
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan.,Department of Neurology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Shao Wei Choy
- Center for Intelligent Signal and Imaging Research, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Epifanio Bagarinao
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan.,Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshiyasu Kato
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazunori Imai
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michihito Masuda
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Reiko Ohdake
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Kazuhiro Hara
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryoichi Nakamura
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Atsuta
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomohiko Nakamura
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gen Sobue
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan.,Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Aichi Medical University, Nagakute, Japan
| |
Collapse
|
10
|
McKenna MC, Corcia P, Couratier P, Siah WF, Pradat PF, Bede P. Frontotemporal Pathology in Motor Neuron Disease Phenotypes: Insights From Neuroimaging. Front Neurol 2021; 12:723450. [PMID: 34484106 PMCID: PMC8415268 DOI: 10.3389/fneur.2021.723450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 01/18/2023] Open
Abstract
Frontotemporal involvement has been extensively investigated in amyotrophic lateral sclerosis (ALS) but remains relatively poorly characterized in other motor neuron disease (MND) phenotypes such as primary lateral sclerosis (PLS), progressive muscular atrophy (PMA), spinal muscular atrophy (SMA), spinal bulbar muscular atrophy (SBMA), post poliomyelitis syndrome (PPS), and hereditary spastic paraplegia (HSP). This review focuses on insights from structural, metabolic, and functional neuroimaging studies that have advanced our understanding of extra-motor disease burden in these phenotypes. The imaging literature is limited in the majority of these conditions and frontotemporal involvement has been primarily evaluated by neuropsychology and post mortem studies. Existing imaging studies reveal that frontotemporal degeneration can be readily detected in ALS and PLS, varying degree of frontotemporal pathology may be captured in PMA, SBMA, and HSP, SMA exhibits cerebral involvement without regional predilection, and there is limited evidence for cerebral changes in PPS. Our review confirms the heterogeneity extra-motor pathology across the spectrum of MNDs and highlights the role of neuroimaging in characterizing anatomical patterns of disease burden in vivo. Despite the contribution of neuroimaging to MND research, sample size limitations, inclusion bias, attrition rates in longitudinal studies, and methodological constraints need to be carefully considered. Frontotemporal involvement is a quintessential clinical facet of MND which has important implications for screening practices, individualized management strategies, participation in clinical trials, caregiver burden, and resource allocation. The academic relevance of imaging frontotemporal pathology in MND spans from the identification of genetic variants, through the ascertainment of presymptomatic changes to the design of future epidemiology studies.
Collapse
Affiliation(s)
- Mary Clare McKenna
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | - Philippe Corcia
- Department of Neurology-Neurophysiology, CRMR ALS, Tours, France.,UMR 1253 iBrain, University of Tours, Tours, France.,LITORALS, Federation of ALS Centres: Tours-Limoges, Limoges, France
| | - Philippe Couratier
- LITORALS, Federation of ALS Centres: Tours-Limoges, Limoges, France.,ALS Centre, Limoges University Hospital (CHU de Limoges), Limoges, France
| | - We Fong Siah
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland
| | | | - Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland.,Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France
| |
Collapse
|
11
|
Cognitive dysfunction in amyotrophic lateral sclerosis: can we predict it? Neurol Sci 2021; 42:2211-2222. [PMID: 33772353 PMCID: PMC8159827 DOI: 10.1007/s10072-021-05188-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/15/2021] [Indexed: 01/26/2023]
Abstract
Background and aim Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the degeneration of both upper and lower motoneurons in the brain and spinal cord leading to motor and extra-motor symptoms. Although traditionally considered a pure motor disease, recent evidences suggest that ALS is a multisystem disorder. Neuropsychological alterations, in fact, are observed in more than 50% of patients: while executive dysfunctions have been firstly identified, alterations in verbal fluency, behavior, and pragmatic and social cognition have also been described. Detecting and monitoring ALS cognitive and behavioral impairment even at early disease stages is likely to have staging and prognostic implications, and it may impact the enrollment in future clinical trials. During the last 10 years, humoral, radiological, neurophysiological, and genetic biomarkers have been reported in ALS, and some of them seem to potentially correlate to cognitive and behavioral impairment of patients. In this review, we sought to give an up-to-date state of the art of neuropsychological alterations in ALS: we will describe tests used to detect cognitive and behavioral impairment, and we will focus on promising non-invasive biomarkers to detect pre-clinical cognitive decline. Conclusions To date, the research on humoral, radiological, neurophysiological, and genetic correlates of neuropsychological alterations is at the early stage, and no conclusive longitudinal data have been published. Further and longitudinal studies on easily accessible and quantifiable biomarkers are needed to clarify the time course and the evolution of cognitive and behavioral impairments of ALS patients.
Collapse
|
12
|
Imai K, Masuda M, Watanabe H, Ogura A, Ohdake R, Tanaka Y, Kato T, Kawabata K, Riku Y, Hara K, Nakamura R, Atsuta N, Bagarinao E, Katahira K, Ohira H, Katsuno M, Sobue G. The neural network basis of altered decision-making in patients with amyotrophic lateral sclerosis. Ann Clin Transl Neurol 2020; 7:2115-2126. [PMID: 33089973 PMCID: PMC7664284 DOI: 10.1002/acn3.51185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/31/2020] [Accepted: 08/10/2020] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Amyotrophic lateral sclerosis (ALS) is a multisystem disorder associated with motor impairment and behavioral/cognitive involvement. We examined decision-making features and changes in the neural hub network in patients with ALS using a probabilistic reversal learning task and resting-state network analysis, respectively. METHODS Ninety ALS patients and 127 cognitively normal participants performed this task. Data from 62 ALS patients and 63 control participants were fitted to a Q-learning model. RESULTS ALS patients had anomalous decision-making features with little shift in choice until they thought the value of the two alternatives had become equal. The quantified parameters (Pαβ) calculated by logistic regression analysis with learning rate and inverse temperature well represented the unique choice pattern of ALS patients. Resting-state network analysis demonstrated a strong correlation between Pαβ and decreased degree centrality in the anterior cingulate gyrus and frontal pole. INTERPRETATION Altered decision-making in ALS patients may be related to the decreased hub function of medial prefrontal areas.
Collapse
Affiliation(s)
- Kazunori Imai
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michihito Masuda
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Aya Ogura
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Reiko Ohdake
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Yasuhiro Tanaka
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshiyasu Kato
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuya Kawabata
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichi Riku
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuhiro Hara
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryoichi Nakamura
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Atsuta
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Kentaro Katahira
- Department of Psychology, Nagoya University Graduate School of Informatics, Nagoya, Japan
| | - Hideki Ohira
- Department of Psychology, Nagoya University Graduate School of Informatics, Nagoya, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gen Sobue
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| |
Collapse
|
13
|
Häkkinen S, Chu SA, Lee SE. Neuroimaging in genetic frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis 2020; 145:105063. [PMID: 32890771 DOI: 10.1016/j.nbd.2020.105063] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) have a strong clinical, genetic and pathological overlap. This review focuses on the current understanding of structural, functional and molecular neuroimaging signatures of genetic FTD and ALS. We overview quantitative neuroimaging studies on the most common genes associated with FTD (MAPT, GRN), ALS (SOD1), and both (C9orf72), and summarize visual observations of images reported in the rarer genes (CHMP2B, TARDBP, FUS, OPTN, VCP, UBQLN2, SQSTM1, TREM2, CHCHD10, TBK1).
Collapse
Affiliation(s)
- Suvi Häkkinen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephanie A Chu
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Suzee E Lee
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
14
|
Luo C, Hu N, Xiao Y, Zhang W, Gong Q, Lui S. Comparison of Gray Matter Atrophy in Behavioral Variant Frontal Temporal Dementia and Amyotrophic Lateral Sclerosis: A Coordinate-Based Meta-Analysis. Front Aging Neurosci 2020; 12:14. [PMID: 32116647 PMCID: PMC7026505 DOI: 10.3389/fnagi.2020.00014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/16/2020] [Indexed: 02/05/2023] Open
Abstract
Background: There is growing evidence supporting behavioral variant frontotemporal dementia (bvFTD) and amyotrophic lateral sclerosis (ALS) as extreme points of a disease spectrum. The aim of this study was to delineate the common and different patterns of gray matter atrophy associated with bvFTD and with ALS by pooling together the results of previous voxel-based morphometry (VBM) studies. Methods: We retrieved VBM studies that investigated gray matter atrophy in bvFTD patients vs. controls and in ALS patients vs. controls. Stereotactic data were extracted from those studies and subsequently tested for convergence and differences using activation likelihood estimation (ALE). A behavioral analysis using the BrainMap database was performed to assess the functional roles of the regions affected by bvFTD and/or ALS. Results: Our study demonstrated a convergence of gray matter atrophy in the frontolimbic structures that involve the bilateral anterior insula and anterior cingulate cortex. Comparing the pattern of GM atrophy in bvFTD and ALS patients revealed greater atrophy in the frontomedial cortex, bilateral caudate, left anterior insula, and right thalamus in those with bvFTD and a higher degree of atrophy in the right motor cortex of those with ALS. Behavioral analysis revealed that the pattern of the affected regions contributed to the dysfunction of emotional and cognitive processing in bvFTD patients and the dysfunction of motor execution in ALS patients. Conclusion: Our results revealed a shared neural basis between bvFTD and ALS subjects, as well as a specific and distinct neural signature that underpinned the clinical manifestations of those two diseases. Those findings outlined the role of the frontomedial-caudate circuit in the development of bvFTD-like deficits in ALS patients.
Collapse
Affiliation(s)
- Chunyan Luo
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| | - Na Hu
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| | - Yuan Xiao
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| | - Wenjing Zhang
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Radakovic R, Puthusseryppady V, Flanagan E, Kiernan MC, Mioshi E, Hornberger M. Frontostriatal grey matter atrophy in amyotrophic lateral sclerosis A visual rating study. Dement Neuropsychol 2018; 12:388-393. [PMID: 30546849 PMCID: PMC6289478 DOI: 10.1590/1980-57642018dn12-040008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterised by frontostriatal grey matter changes similar to those in frontotemporal dementia (FTD). However, these changes are usually detected at a group level, and simple visual magnetic resonance imaging (MRI) cortical atrophy scales may further elucidate frontostriatal changes in ALS.
Collapse
Affiliation(s)
- Ratko Radakovic
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK.,Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | | | - Emma Flanagan
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | | | - Eneida Mioshi
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - Michael Hornberger
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
16
|
Christidi F, Karavasilis E, Rentzos M, Kelekis N, Evdokimidis I, Bede P. Clinical and Radiological Markers of Extra-Motor Deficits in Amyotrophic Lateral Sclerosis. Front Neurol 2018; 9:1005. [PMID: 30524366 PMCID: PMC6262087 DOI: 10.3389/fneur.2018.01005] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is now universally recognized as a complex multisystem disorder with considerable extra-motor involvement. The neuropsychological manifestations of frontotemporal, parietal, and basal ganglia involvement in ALS have important implications for compliance with assistive devices, survival, participation in clinical trials, caregiver burden, and the management of individual care needs. Recent advances in neuroimaging have been instrumental in characterizing the biological substrate of heterogeneous cognitive and behavioral deficits in ALS. In this review we discuss the clinical and radiological aspects of cognitive and behavioral impairment in ALS focusing on the recognition, assessment, and monitoring of these symptoms.
Collapse
Affiliation(s)
- Foteini Christidi
- First Department of Neurology, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstratios Karavasilis
- Second Department of Radiology, University General Hospital Attikon, National and Kapodistrian University of Athens, Athens, Greece
| | - Michail Rentzos
- First Department of Neurology, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kelekis
- Second Department of Radiology, University General Hospital Attikon, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Evdokimidis
- First Department of Neurology, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Peter Bede
- Computational Neuroimaging Group, Academic Unit of Neurology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
17
|
Masuda M, Watanabe H, Tanaka Y, Ohdake R, Ogura A, Yokoi T, Imai K, Kawabata K, Riku Y, Hara K, Nakamura R, Atsuta N, Katsuno M, Sobue G. Age-related impairment in Addenbrooke's cognitive examination revised scores in patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2018; 19:578-584. [PMID: 30379106 DOI: 10.1080/21678421.2018.1510009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Older age is thought to be a risk factor for cognitive impairment in amyotrophic lateral sclerosis (ALS). However, very few clinical studies have investigated this relationship using sufficient numbers of healthy controls that correspond to each generation. The purpose of this study was to determine the age-related changes of Addenbrooke's Cognitive Examination-Revised (ACE-R) score in ALS patients by comparing healthy controls of various ages. METHODS 131 ALS patients (86 males, 45 females; mean age: 64.8 ± 10.2; mean education: 12.5 ± 2.7) and 151 age-, gender-, and education-matched healthy controls were enrolled. We applied ACE-R, which could evaluate not only global cognition but five cognitive subdomains that included orientation/attention, memory, verbal fluency, language, and visuospatial ability. RESULTS ALS patients had significantly lower total and subdomain scores of ACE-R than healthy controls. Multiple regression analysis suggested that age at examination and age at onset had significant influence on ACE-R scores. When we divided ALS patients and healthy controls into 4 groups according to age at examination for ALS, total and each subdomain scores were significantly lower with age, particularly in the older-middle and the oldest group (66.31 years or more) of ALS compared with healthy controls. Locally weighted scatterplot smoothing analysis supported that these reductions of ACE-R total and subdomain scores in ALS patients were more accelerated by approximately 60 years as compared with healthy controls. CONCLUSION ALS patients showed accelerated age-related ACE-R score reduction beyond normal ageing processes.
Collapse
Affiliation(s)
- Michihito Masuda
- a Department of Neurology , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Hirohisa Watanabe
- a Department of Neurology , Nagoya University Graduate School of Medicine , Nagoya , Japan.,b Brain and Mind Research Center, Nagoya University , Nagoya , Japan
| | - Yasuhiro Tanaka
- a Department of Neurology , Nagoya University Graduate School of Medicine , Nagoya , Japan.,b Brain and Mind Research Center, Nagoya University , Nagoya , Japan
| | - Reiko Ohdake
- b Brain and Mind Research Center, Nagoya University , Nagoya , Japan
| | - Aya Ogura
- a Department of Neurology , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Takamasa Yokoi
- a Department of Neurology , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Kazunori Imai
- a Department of Neurology , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Kazuya Kawabata
- a Department of Neurology , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Yuichi Riku
- a Department of Neurology , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Kazuhiro Hara
- a Department of Neurology , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Ryoichi Nakamura
- a Department of Neurology , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Naoki Atsuta
- a Department of Neurology , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Masahisa Katsuno
- a Department of Neurology , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Gen Sobue
- b Brain and Mind Research Center, Nagoya University , Nagoya , Japan
| |
Collapse
|
18
|
Sobue G, Ishigaki S, Watanabe H. Pathogenesis of Frontotemporal Lobar Degeneration: Insights From Loss of Function Theory and Early Involvement of the Caudate Nucleus. Front Neurosci 2018; 12:473. [PMID: 30050404 PMCID: PMC6052086 DOI: 10.3389/fnins.2018.00473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal lobar degeneration (FTLD) is a group of clinically, pathologically and genetically heterogeneous neurodegenerative disorders that involve the frontal and temporal lobes. Behavioral variant frontotemporal dementia (bvFTD), semantic dementia (SD), and progressive non-fluent aphasia (PNFA) are three major clinical syndromes. TDP-43, FUS, and tau are three major pathogenetic proteins. In this review, we first discuss the loss-of-function mechanism of FTLD. We focus on FUS-associated pathogenesis in which FUS is linked to tau by regulating its alternative splicing machinery. Moreover, FUS is associated with abnormalities in post-synaptic formation, which can be an early disease marker of FTLD. Second, we discuss clinical and pathological aspects of FTLD. Recently, FTLD and amyotrophic lateral sclerosis (ALS) have been recognized as the same disease entity; indeed, nearly all sporadic ALS cases show TDP-43 pathology irrespective of FTD phenotype. Thus, investigating early structural and network changes in the FTLD/ALS continuum can be useful for developing early diagnostic markers of FTLD. MRI studies have revealed the involvement of the caudate nucleus and its anatomical networks in association with the early phase of behavioral/cognitive decline in FTLD/ALS. In particular, even ALS patients with normal cognition have shown a significant decrease in structural connectivity between the caudate head networks. In pathological studies, FTLD/ALS has shown striatal involvement of both efferent system components and glutamatergic inputs from the cerebral cortices even in ALS patients. Thus, the caudate nucleus may be primarily associated with behavioral abnormality and cognitive involvement in FTLD/ALS. Although several clinical trials have been conducted, there is still no therapy that can change the disease course in patients with FTLD. Therefore, there is an urgent need to establish a strategy for predominant sporadic FTLD cases.
Collapse
Affiliation(s)
- Gen Sobue
- Nagoya University Graduate School of Medicine, Brain and Mind Center, Nagoya University, Nagoya, Japan
| | - Shinsuke Ishigaki
- Nagoya University Graduate School of Medicine, Brain and Mind Center, Nagoya University, Nagoya, Japan
| | - Hirohisa Watanabe
- Nagoya University Graduate School of Medicine, Brain and Mind Center, Nagoya University, Nagoya, Japan
| |
Collapse
|
19
|
Agosta F, Spinelli EG, Filippi M. Neuroimaging in amyotrophic lateral sclerosis: current and emerging uses. Expert Rev Neurother 2018; 18:395-406. [PMID: 29630421 DOI: 10.1080/14737175.2018.1463160] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Several neuroimaging techniques have been used to define in vivo markers of pathological alterations underlying amyotrophic lateral sclerosis (ALS). Growing evidence supports the use of magnetic resonance imaging (MRI) and positron emission tomography (PET) for the non-invasive detection of central nervous system involvement in patients with ALS. Areas covered: A comprehensive overview of structural and functional neuroimaging applications in ALS is provided, focusing on motor and extra-motor involvement in the brain and the spinal cord. Implications for pathogenetic models, patient diagnosis, prognosis, monitoring, and the design of clinical trials are discussed. Expert commentary: State-of-the-art neuroimaging techniques provide fundamental instruments for the detection and quantification of upper motor neuron and extra-motor brain involvement in ALS, with relevance for both pathophysiologic investigation and clinical practice. Network-based analysis of structural and functional connectivity alterations and multimodal approaches combining several neuroimaging measures are promising tools for the development of novel diagnostic and prognostic markers to be used at the individual patient level.
Collapse
Affiliation(s)
- Federica Agosta
- a Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience , San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy
| | - Edoardo Gioele Spinelli
- a Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience , San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy.,b Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience , San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy
| | - Massimo Filippi
- a Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience , San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy.,b Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience , San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy
| |
Collapse
|
20
|
Senda J, Atsuta N, Watanabe H, Bagarinao E, Imai K, Yokoi D, Riku Y, Masuda M, Nakamura R, Watanabe H, Ito M, Katsuno M, Naganawa S, Sobue G. Structural MRI correlates of amyotrophic lateral sclerosis progression. J Neurol Neurosurg Psychiatry 2017; 88:901-907. [PMID: 28501822 DOI: 10.1136/jnnp-2016-314337] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 02/09/2017] [Accepted: 03/06/2017] [Indexed: 11/04/2022]
Abstract
PURPOSE Amyotrophic lateral sclerosis (ALS) presents with varying degrees of brain degeneration that can extend beyond the corticospinal tract (CST). Furthermore, the clinical course and progression of ALS varies widely. Brain degeneration detected using structural MRI could reflect disease progression. SUBJECTS AND METHODS On study registration, 3-Tesla volumetric MRI and diffusion tensor imaging scans were obtained at baseline in 38 healthy controls and 67 patients with sporadic ALS. Patients had Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) scores of ≥36 and did not have the chromosome 9, open reading frame 72 repeat expansion. Six months later, changes in ALSFRS-R (ΔALSFRS-R) scores were calculated and patients were grouped into three categories, namely, patients with slow progression with ΔALSFRS-R scores ≤3 (n=19), intermediate progression with ΔALSFRS-R scores =4, 5 and 6 (n=36) and rapid progression with ΔALSFRS-R scores ≥7 (n=12). We analysed voxel-based morphometry and tract-based spatial statistics among these subgroups and controls. RESULTS In comparison with controls, patients with ALS showed grey matter atrophy and decreased fractional anisotropy beyond the motor cortex and CST, especially in the frontotemporal lobes and basal ganglia. Moreover, the degree of change was highly proportional to ΔALSFRS-R at the 6-month assessment. CONCLUSION A more rapid disease progression and poorer functional decline were associated with greater involvement of the extra-motor cortex and basal ganglia, suggesting that the spatial extent of brain involvement can be an indicator of the progression in ALS.
Collapse
Affiliation(s)
- Joe Senda
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,Department of Neurology and Rehabilitation, Komaki City Hospital, Komaki, Aichi, Japan
| | - Naoki Atsuta
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hirohisa Watanabe
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan
| | | | - Kazunori Imai
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Daichi Yokoi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yuichi Riku
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Michihito Masuda
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Ryoichi Nakamura
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hazuki Watanabe
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Mizuki Ito
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shinji Naganawa
- Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan.,Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,Research Division of Dementia and Neurodegenerative Disease, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
21
|
Riku Y, Watanabe H, Yoshida M, Mimuro M, Iwasaki Y, Masuda M, Ishigaki S, Katsuno M, Sobue G. Pathologic Involvement of Glutamatergic Striatal Inputs From the Cortices in TAR DNA-Binding Protein 43 kDa-Related Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. J Neuropathol Exp Neurol 2017; 76:759-768. [PMID: 28859339 DOI: 10.1093/jnen/nlx055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS), recent studies have presumed relationships between cognitive declines and striatal dysfunctions. The striatum contributes to socio-cognitive functions by receiving glutamatergic inputs from the cerebral cortices. However, the vulnerability of these cortico-striatal inputs is unclear in these diseases. This study aimed to evaluate the glutamatergic inputs to the striatum from the cerebral cortices in patients with sporadic TDP-43-related FTLD (FTLD-TDP) and ALS (ALS-TDP). We examined 46 consecutively autopsied patients (31 FTLD-TDP and 15 ALS patients) and 10 normal controls. The axon terminals of the glutamatergic cortico-striatal projection neurons were quantified at the striatum using antivesicular glutamate transporter-1 (VGLUT-1) immunohistochemistry. In results, all FTLD-TDP patients displayed marked depletion of VGLUT-1-positive axon terminals in the caudate head and putamen. Particularly, the patients with type C pathology showed a severe loss. The nondemented ALS patients displayed loss of VGLUT-1-positive axon terminals in the putamen, but those were relatively spared in the caudate head. Confocal microscopy revealed TDP-43 aggregations within VGLUT-1-positive axon terminals in a subset of the patients. Our results indicate marked involvement of glutamatergic striatal inputs from the cerebral cortices in association with socio-cognitive declines in a disease spectrum of TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Yuichi Riku
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, Japan
| | - Hirohisa Watanabe
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, Japan
| | - Mari Yoshida
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, Japan
| | - Maya Mimuro
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, Japan
| | - Yasushi Iwasaki
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, Japan
| | - Michihito Masuda
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, Japan
| | - Shinsuke Ishigaki
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan; and Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|