1
|
Sharma R, Khan Z, Mehan S, Das Gupta G, Narula AS. Unraveling the Multifaceted Insights into Amyotrophic Lateral Sclerosis: Genetic Underpinnings, Pathogenesis, and Therapeutic Horizons. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024:108518. [PMID: 39491718 DOI: 10.1016/j.mrrev.2024.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/19/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Amyotrophic Lateral Sclerosis (ALS), a progressive neurodegenerative disease, primarily impairs upper and lower motor neurons, leading to debilitating motor dysfunction and eventually respiratory failure, widely known as Lou Gehrig's disease. ALS presents with diverse symptomatology, including dysarthria, dysphagia, muscle atrophy, and hyperreflexia. The prevalence of ALS varies globally, with incidence rates ranging from 1.5 to 3.8 per 100,000 individuals, significantly affecting populations aged 45-80. A complex interplay of genetic and environmental factors underpins ALS pathogenesis. Key genetic contributors include mutations in chromosome 9 open reading frame 72 (C9ORF72), superoxide dismutase type 1 (SOD1), Fusedin sarcoma (FUS), and TAR DNA-binding protein (TARDBP) genes, accounting for a considerable fraction of both familial (fALS) and sporadic (sALS) cases. The disease mechanism encompasses aberrant protein folding, mitochondrial dysfunction, oxidative stress, excitotoxicity, and neuroinflammation, contributing to neuronal death. This review consolidates current insights into ALS's multifaceted etiology, highlighting the roles of environmental exposures (e.g., toxins, heavy metals) and their interaction with genetic predispositions. We emphasize the polygenic nature of ALS, where multiple genetic variations cumulatively influence disease susceptibility and progression. This aspect underscores the challenges in ALS diagnosis, which currently lacks specific biomarkers and relies on symptomatology and familial history. Therapeutic strategies for ALS, still in nascent stages, involve symptomatic management and experimental approaches targeting molecular pathways implicated in ALS pathology. Gene therapy, focusing on specific ALS mutations, and stem cell therapy emerge as promising avenues. However, effective treatments remain elusive, necessitating a deeper understanding of ALS's genetic architecture and the development of targeted therapies based on personalized medicine principles. This review aims to provide a comprehensive understanding of ALS, encouraging further research into its complex genetic underpinnings and the development of innovative, effective treatment modalities.
Collapse
Affiliation(s)
- Ramaish Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
2
|
Leykam L, Forsberg KME, Nordström U, Hjertkvist K, Öberg A, Jonsson E, Andersen PM, Marklund SL, Zetterström P. Specific analysis of SOD1 enzymatic activity in CSF from ALS patients with and without SOD1 mutations. Neurobiol Dis 2024; 202:106718. [PMID: 39490682 DOI: 10.1016/j.nbd.2024.106718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/06/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Mutations in superoxide dismutase-1 (SOD1) are a cause of hereditary amyotrophic lateral sclerosis (ALS) through a gain of function mechanism involving unfolded mutant SOD1. Intrathecal gene therapy using the antisense-oligo-nucleotide drug tofersen to reduce SOD1 expression delays disease progression and has recently been approved in the United States and the European Union. However, the discovery of children homozygous for inactivating SOD1 mutations developing the SOD1 Deficiency Syndrome (ISODDES) with injury to the motor system suggests that a too low SOD1 antioxidant activity may be deleterious in humans. Measuring SOD1 activity in cerebrospinal fluid (CSF) in tofersen-treated patients is recommended but difficult due to low concentration and the presence of the isoenzyme SOD3. We here present a sensitive method to assess SOD1 activity by removing SOD3 from CSF samples using highly specific immobilized antibodies and subsequent measurement of the SOD activity. We validated the method on 171 CSF samples from ALS patients with and without mutations and controls and used paired erythrocyte samples for comparison. We found that ALS patients with wildtype SOD1, the SOD1 activity in CSF was equal to controls, but patients with mutant SOD1 show lower activity in CSF, even for patients with mutants previously reported to have full activity in erythrocytes. Activity variation in CSF was large among patients carrying the same SOD1 mutation and larger than in erythrocytes and in post-mortem nervous tissue. Additionally, we identified a discrepancy between the SOD1 activity and protein level measured with ELISA in both CSF and erythrocytes. Since antibodies used for SOD1 ELISA-quantification are raised against the natively folded wildtype SOD1, the concentration of mutant SOD1s may be underestimated. Analysis of SOD1 enzymatic activity in CSF is therefore a more reliable way to monitor the effect of SOD1-lowering drugs.
Collapse
Affiliation(s)
- Laura Leykam
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, SE-901 85 Umeå, Sweden
| | - Karin M E Forsberg
- Department of Clinical Sciences, Neuroscience, Umeå University, SE-901 85 Umeå, Sweden
| | - Ulrika Nordström
- Department of Clinical Sciences, Neuroscience, Umeå University, SE-901 85 Umeå, Sweden
| | - Karin Hjertkvist
- Department of Clinical Sciences, Neuroscience, Umeå University, SE-901 85 Umeå, Sweden
| | - Agneta Öberg
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, SE-901 85 Umeå, Sweden
| | - Eva Jonsson
- Department of Clinical Sciences, Neuroscience, Umeå University, SE-901 85 Umeå, Sweden
| | - Peter M Andersen
- Department of Clinical Sciences, Neuroscience, Umeå University, SE-901 85 Umeå, Sweden
| | - Stefan L Marklund
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, SE-901 85 Umeå, Sweden
| | - Per Zetterström
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, SE-901 85 Umeå, Sweden.
| |
Collapse
|
3
|
Kalia M, Miotto M, Ness D, Opie-Martin S, Spargo TP, Di Rienzo L, Biagini T, Petrizzelli F, Al Khleifat A, Kabiljo R, Mazza T, Ruocco G, Milanetti E, Dobson RJB, Al-Chalabi A, Iacoangeli A. Molecular dynamics analysis of superoxide dismutase 1 mutations suggests decoupling between mechanisms underlying ALS onset and progression. Comput Struct Biotechnol J 2023; 21:5296-5308. [PMID: 37954145 PMCID: PMC10637862 DOI: 10.1016/j.csbj.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 11/14/2023] Open
Abstract
Mutations in the superoxide dismutase 1 (SOD1) gene are the second most common known cause of ALS. SOD1 variants express high phenotypic variability and over 200 have been reported in people with ALS. It was previously proposed that variants can be broadly classified in two groups, 'wild-type like' (WTL) and 'metal binding region' (MBR) variants, based on their structural location and biophysical properties. MBR variants, but not WTL variants, were associated with a reduction of SOD1 enzymatic activity. In this study we used molecular dynamics and large clinical datasets to characterise the differences in the structural and dynamic behaviour of WTL and MBR variants with respect to the wild-type SOD1, and how such differences influence the ALS clinical phenotype. Our study identified marked structural differences, some of which are observed in both variant groups, while others are group specific. Moreover, collecting clinical data of approximately 500 SOD1 ALS patients carrying variants, we showed that the survival time of patients carrying an MBR variant is generally longer (∼6 years median difference, p < 0.001) with respect to patients with a WTL variant. In conclusion, our study highlighted key differences in the dynamic behaviour between WTL and MBR SOD1 variants, and between variants and wild-type SOD1 at an atomic and molecular level, that could be further investigated to explain the associated phenotypic variability. Our results support the hypothesis of a decoupling between mechanisms of onset and progression of SOD1 ALS, and an involvement of loss-of-function of SOD1 with the disease progression.
Collapse
Affiliation(s)
- Munishikha Kalia
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Mattia Miotto
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Deborah Ness
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Sarah Opie-Martin
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Thomas P. Spargo
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Lorenzo Di Rienzo
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Tommaso Biagini
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Italy
| | - Francesco Petrizzelli
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Italy
| | - Ahmad Al Khleifat
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Renata Kabiljo
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | | | | | - Tommaso Mazza
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Italy
| | - Giancarlo Ruocco
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Edoardo Milanetti
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Richard JB Dobson
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Institute of Health Informatics, University College London, London, UK
- National Institute for Health Research Biomedical Research Centre and Dementia Unit at South London and Maudsley NHS Foundation Trust King’s College London, London, United Kingdom
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
- Clinical Neurosciences, King’s College Hospital, Denmark Hill, London, UK
| | - Alfredo Iacoangeli
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
- National Institute for Health Research Biomedical Research Centre and Dementia Unit at South London and Maudsley NHS Foundation Trust King’s College London, London, United Kingdom
| |
Collapse
|
4
|
Park JH, Nordström U, Tsiakas K, Keskin I, Elpers C, Mannil M, Heller R, Nolan M, Alburaiky S, Zetterström P, Hempel M, Schara-Schmidt U, Biskup S, Steinacker P, Otto M, Weishaupt J, Hahn A, Santer R, Marquardt T, Marklund SL, Andersen PM. The motor system is exceptionally vulnerable to absence of the ubiquitously expressed superoxide dismutase-1. Brain Commun 2023; 5:fcad017. [PMID: 36793789 PMCID: PMC9924500 DOI: 10.1093/braincomms/fcad017] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/21/2022] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
Superoxide dismutase-1 is a ubiquitously expressed antioxidant enzyme. Mutations in SOD1 can cause amyotrophic lateral sclerosis, probably via a toxic gain-of-function involving protein aggregation and prion-like mechanisms. Recently, homozygosity for loss-of-function mutations in SOD1 has been reported in patients presenting with infantile-onset motor neuron disease. We explored the bodily effects of superoxide dismutase-1 enzymatic deficiency in eight children homozygous for the p.C112Wfs*11 truncating mutation. In addition to physical and imaging examinations, we collected blood, urine and skin fibroblast samples. We used a comprehensive panel of clinically established analyses to assess organ function and analysed oxidative stress markers, antioxidant compounds, and the characteristics of the mutant Superoxide dismutase-1. From around 8 months of age, all patients exhibited progressive signs of both upper and lower motor neuron dysfunction, cerebellar, brain stem, and frontal lobe atrophy and elevated plasma neurofilament concentration indicating ongoing axonal damage. The disease progression seemed to slow down over the following years. The p.C112Wfs*11 gene product is unstable, rapidly degraded and no aggregates were found in fibroblast. Most laboratory tests indicated normal organ integrity and only a few modest deviations were found. The patients displayed anaemia with shortened survival of erythrocytes containing decreased levels of reduced glutathione. A variety of other antioxidants and oxidant damage markers were within normal range. In conclusion, non-neuronal organs in humans show a remarkable tolerance to absence of Superoxide dismutase-1 enzymatic activity. The study highlights the enigmatic specific vulnerability of the motor system to both gain-of-function mutations in SOD1 and loss of the enzyme as in the here depicted infantile superoxide dismutase-1 deficiency syndrome.
Collapse
Affiliation(s)
- Julien H Park
- Department of Clinical Sciences, Neurosciences, Umeå University, 901 87 Umeå, Sweden,Department of General Paediatrics, University of Münster, 48149 Münster, Germany
| | - Ulrika Nordström
- Department of Clinical Sciences, Neurosciences, Umeå University, 901 87 Umeå, Sweden
| | - Konstantinos Tsiakas
- Department of Paediatrics, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Isil Keskin
- Department of Medical Biosciences, Pathology, Umeå University, 901 85 Umeå, Sweden
| | - Christiane Elpers
- Department of General Paediatrics, University of Münster, 48149 Münster, Germany
| | - Manoj Mannil
- Clinic for Radiology, University Hospital Münster, WWU University of Münster, 48149 Münster, Germany
| | - Raoul Heller
- Starship Children’s Health, Auckland City Hospital, Auckland 1142, New Zealand
| | - Melinda Nolan
- Starship Children’s Health, Auckland City Hospital, Auckland 1142, New Zealand
| | - Salam Alburaiky
- Starship Children’s Health, Auckland City Hospital, Auckland 1142, New Zealand
| | - Per Zetterström
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Maja Hempel
- Department of Paediatrics, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany,Current address: Institute of Human Genetics, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | | | - Saskia Biskup
- CeGAT GmbH and Praxis für Humangenetik Tübingen, 72076 Tübingen, Germany
| | - Petra Steinacker
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Markus Otto
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Jochen Weishaupt
- Division for Neurodegenerative Diseases, Department of Neurology, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Andreas Hahn
- Department of Child Neurology, Justus Liebig University, 35392 Giessen, Germany
| | - René Santer
- Department of Paediatrics, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Thorsten Marquardt
- Department of General Paediatrics, University of Münster, 48149 Münster, Germany
| | - Stefan L Marklund
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Peter M Andersen
- Correspondence to: Peter Munch Andersen Department of Clinical Science, Neurosciences Umeå University, SE-901 85 Umeå, Sweden E-mail:
| |
Collapse
|
5
|
Günther R, Pal A, Williams C, Zimyanin VL, Liehr M, von Neubeck C, Krause M, Parab MG, Petri S, Kalmbach N, Marklund SL, Sterneckert J, Munch Andersen P, Wegner F, Gilthorpe JD, Hermann A. Alteration of Mitochondrial Integrity as Upstream Event in the Pathophysiology of SOD1-ALS. Cells 2022; 11:cells11071246. [PMID: 35406813 PMCID: PMC8997900 DOI: 10.3390/cells11071246] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Little is known about the early pathogenic events by which mutant superoxide dismutase 1 (SOD1) causes amyotrophic lateral sclerosis (ALS). This lack of mechanistic understanding is a major barrier to the development and evaluation of efficient therapies. Although protein aggregation is known to be involved, it is not understood how mutant SOD1 causes degeneration of motoneurons (MNs). Previous research has relied heavily on the overexpression of mutant SOD1, but the clinical relevance of SOD1 overexpression models remains questionable. We used a human induced pluripotent stem cell (iPSC) model of spinal MNs and three different endogenous ALS-associated SOD1 mutations (D90Ahom, R115Ghet or A4Vhet) to investigate early cellular disturbances in MNs. Although enhanced misfolding and aggregation of SOD1 was induced by proteasome inhibition, it was not affected by activation of the stress granule pathway. Interestingly, we identified loss of mitochondrial, but not lysosomal, integrity as the earliest common pathological phenotype, which preceded elevated levels of insoluble, aggregated SOD1. A super-elongated mitochondrial morphology with impaired inner mitochondrial membrane potential was a unifying feature in mutant SOD1 iPSC-derived MNs. Impaired mitochondrial integrity was most prominent in mutant D90Ahom MNs, whereas both soluble disordered and detergent-resistant misfolded SOD1 was more prominent in R115Ghet and A4Vhet mutant lines. Taking advantage of patient-specific models of SOD1-ALS in vitro, our data suggest that mitochondrial dysfunction is one of the first crucial steps in the pathogenic cascade that leads to SOD1-ALS and also highlights the need for individualized medical approaches for SOD1-ALS.
Collapse
Affiliation(s)
- René Günther
- Department of Neurology, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany; (R.G.); (A.P.); (V.L.Z.); (M.L.); (M.G.P.)
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 01307 Dresden, Germany
| | - Arun Pal
- Department of Neurology, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany; (R.G.); (A.P.); (V.L.Z.); (M.L.); (M.G.P.)
- Dresden High Magnetic Field Laboratory (HLD), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany
| | - Chloe Williams
- Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden; (C.W.); (J.D.G.)
| | - Vitaly L. Zimyanin
- Department of Neurology, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany; (R.G.); (A.P.); (V.L.Z.); (M.L.); (M.G.P.)
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| | - Maria Liehr
- Department of Neurology, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany; (R.G.); (A.P.); (V.L.Z.); (M.L.); (M.G.P.)
| | - Cläre von Neubeck
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany; (C.v.N.); (M.K.)
- OncoRay—National Center for Radiation Research in Oncology, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany
- Clinic for Particle Therapy, West German Proton Therapy Centre Essen (WPE) gGmbH, University Medical Centre of Essen, 45147 Essen, Germany
| | - Mechthild Krause
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany; (C.v.N.); (M.K.)
- OncoRay—National Center for Radiation Research in Oncology, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Radiooncology—OncoRay, 01328 Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Mrudula G. Parab
- Department of Neurology, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany; (R.G.); (A.P.); (V.L.Z.); (M.L.); (M.G.P.)
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany; (S.P.); (N.K.); (F.W.)
| | - Norman Kalmbach
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany; (S.P.); (N.K.); (F.W.)
| | - Stefan L. Marklund
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, 90187 Umeå, Sweden;
| | - Jared Sterneckert
- Center for Regenerative Therapies Dresden, Technical University Dresden, 01307 Dresden, Germany;
| | | | - Florian Wegner
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany; (S.P.); (N.K.); (F.W.)
| | - Jonathan D. Gilthorpe
- Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden; (C.W.); (J.D.G.)
| | - Andreas Hermann
- Translational Neurodegeneration Section, “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
- Correspondence: ; Tel.: +49-381-4949541
| |
Collapse
|
6
|
Müller K, Oh KW, Nordin A, Panthi S, Kim SH, Nordin F, Freischmidt A, Ludolph AC, Ki CS, Forsberg K, Weishaupt J, Kim YE, Andersen PM. De novo mutations in SOD1 are a cause of ALS. J Neurol Neurosurg Psychiatry 2022; 93:201-206. [PMID: 34518333 PMCID: PMC8784989 DOI: 10.1136/jnnp-2021-327520] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/05/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The only identified cause of amyotrophic lateral sclerosis (ALS) are mutations in a number of genes found in familial cases but also in sporadic cases. De novo mutations occurring in a parental gonadal cell, in the zygote or postzygotic during embryonal development can result in an apparently sporadic/isolated case of ALS later in life. We searched for de novo mutations in SOD1 as a cause of ALS. METHODS We analysed peripheral-blood exome, genome and Sanger sequencing to identify deleterious mutations in SOD1 in 4000 ALS patients from Germany, South Korea and Sweden. Parental kinship was confirmed using highly polymorphic microsatellite markers across the genome. Medical genealogical and clinical data were reviewed and compared with the literature. RESULTS We identified four sporadic ALS cases with de novo mutations in SOD1. They aggregate in hot-spot codons earlier found mutated in familial cases. Their phenotypes match closely what has earlier been reported in familial cases with pathogenic mutations in SOD1. We also encountered familial cases where de novo mutational events in recent generations may have been involved. CONCLUSIONS De novo mutations are a cause of sporadic ALS and may also be underpinning smaller families with few affected ALS cases. It was not possible to ascertain if the origin of the de novo mutations was parental germline, zygotic or postzygotic during embryonal development. All ALS patients should be offered genetic counselling and genetic screening, the challenges of variant interpretation do not outweigh the potential benefits including earlier confirmed diagnosis and possible bespoken therapy.
Collapse
Affiliation(s)
| | - Ki-Wook Oh
- Department of Neurology, Hanyang University Seoul Hospital, Seongdong-gu, Seoul, Republic of Korea
- Cell Therapy Center, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Angelica Nordin
- Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Sudhan Panthi
- Department of Neurology, Ulm University, Ulm, Germany
| | - Seung Hyun Kim
- Department of Neurology, Hanyang University Seoul Hospital, Seongdong-gu, Seoul, Republic of Korea
- Cell Therapy Center, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Frida Nordin
- Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | | | | | - Chang Seok Ki
- Genome Research Centre, GC Genome, Yongin, Republic of Korea
| | - Karin Forsberg
- Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
- Medical Biosciences, Umeå University, Umeå, Sweden
| | - Jochen Weishaupt
- Department for Neurodegeneration, Universitätsmedizin Mannheim, Mannheim, Germany
| | - Young-Eun Kim
- Department of Laboratory Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | | |
Collapse
|
7
|
Berdyński M, Miszta P, Safranow K, Andersen PM, Morita M, Filipek S, Żekanowski C, Kuźma-Kozakiewicz M. SOD1 mutations associated with amyotrophic lateral sclerosis analysis of variant severity. Sci Rep 2022; 12:103. [PMID: 34996976 PMCID: PMC8742055 DOI: 10.1038/s41598-021-03891-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023] Open
Abstract
Mutations in superoxide dismutase 1 gene (SOD1) are linked to amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder predominantly affecting upper and lower motor neurons. The clinical phenotype of ALS shows inter- and intrafamilial heterogeneity. The aim of the study was to analyze the relations between individual SOD1 mutations and the clinical presentation using in silico methods to assess the SOD1 mutations severity. We identified SOD1 causative variants in a group of 915 prospectively tested consecutive Polish ALS patients from a neuromuscular clinical center, performed molecular modeling of mutated SOD1 proteins and in silico analysis of mutation impact on clinical phenotype and survival analysis of associations between mutations and hazard of clinical end-points. Fifteen SOD1 mutations were identified in 21.1% familial and 2.3% sporadic ALS cases. Their effects on SOD1 protein structure and functioning inferred from molecular modeling and in silico analyses correlate well with the clinical data. Molecular modeling results support the hypothesis that folding intermediates rather than mature SOD1 protein give rise to the source of cytotoxic conformations in ALS. Significant associations between type of mutation and clinical end-points were found.
Collapse
Affiliation(s)
- Mariusz Berdyński
- Laboratory of Neurogenetics, Department of Neurodegenerative Disorders, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland. .,Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden.
| | - Przemysław Miszta
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 72 Powstańców Wlkp. Str., 70-111, Szczecin, Poland
| | - Peter M Andersen
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| | - Mitsuya Morita
- Division of Neurology, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Sławomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Cezary Żekanowski
- Laboratory of Neurogenetics, Department of Neurodegenerative Disorders, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Kuźma-Kozakiewicz
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland. .,Neurodegenerative Diseases Research Group, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
8
|
Peng H, Zhang S, Zhang Z, Wang X, Tian X, Zhang L, Du J, Huang Y, Jin H. Nitric oxide inhibits endothelial cell apoptosis by inhibiting cysteine-dependent SOD1 monomerization. FEBS Open Bio 2022; 12:538-548. [PMID: 34986524 PMCID: PMC8804620 DOI: 10.1002/2211-5463.13362] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/07/2021] [Accepted: 01/04/2022] [Indexed: 11/23/2022] Open
Abstract
Endothelial cell apoptosis is an important pathophysiology in many cardiovascular diseases. The gasotransmitter nitric oxide (NO) is known to regulate cell survival and apoptosis. However, the mechanism underlying the effect of NO remains unclear. In this research, by targeting cytosolic copper/zinc superoxide dismutase (SOD1) monomerization, we aimed to explore how NO inhibited endothelial cell apoptosis. We showed that treatment with the NO synthase (NOS) inhibitor nomega‐nitro‐l‐arginine methyl ester hydrochloride (L‐NAME) significantly decreased the endogenous NO content of endothelial cells, facilitated the formation of SOD1 monomers, inhibited dismutase activity, and promoted reactive oxygen species (ROS) accumulation in human umbilical vein endothelial cells (HUVECs); by contrast, supplementation with the NO donor sodium nitroprusside (SNP) upregulated NO content, prevented the formation of SOD1 monomers, enhanced dismutase activity, and reduced ROS accumulation in L‐NAME‐treated HUVECs. Mechanistically, tris(2‐carboxyethyl) phosphine hydrochloride (TCEP), a specific reducer of cysteine thiol, increased SOD1 monomer formation, thus preventing the NO‐induced increase in dismutase activity and the decrease in ROS. Furthermore, SNP inhibited HUVEC apoptosis caused by the decrease in endogenous NO, whereas TCEP abolished this protective effect of SNP. In summary, our data reveal that NO protects endothelial cells against apoptosis by inhibiting cysteine‐dependent SOD1 monomerization to enhance SOD1 activity and inhibit oxidative stress.
Collapse
Affiliation(s)
- Hanlin Peng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Shangyue Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Zaifeng Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiuli Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiaoyu Tian
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Lulu Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
9
|
Ezer S, Daana M, Park JH, Yanovsky-Dagan S, Nordström U, Basal A, Edvardson S, Saada A, Otto M, Meiner V, Marklund SL, Andersen PM, Harel T. Infantile SOD1 deficiency syndrome caused by a homozygous SOD1 variant with absence of enzyme activity. Brain 2021; 145:872-878. [PMID: 34788402 DOI: 10.1093/brain/awab416] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/16/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
Pathogenic variants in SOD1, encoding superoxide dismutase 1, are responsible for about 20% of all familial amyotrophic lateral sclerosis cases, through a gain-of-function mechanism. Recently, two reports showed that a specific homozygous SOD1 loss-of-function variant is associated with an infantile progressive motor-neurological syndrome. Exome sequencing followed by molecular studies, including cDNA analysis, SOD1 protein levels and enzymatic activity, and plasma neurofilament light chain levels, were undertaken in an infant with severe global developmental delay, axial hypotonia and limb spasticity. We identified a homozygous 3-bp in-frame deletion in SOD1. cDNA analysis predicted the loss of a single valine residue from a tandem pair (p.Val119/Val120) in the wild-type protein, yet expression levels and splicing were preserved. Analysis of SOD1 activity and protein levels in erythrocyte lysates showed essentially no enzymatic activity and undetectable SOD1 protein in the child, whereas the parents had ∼50% protein expression and activity relative to controls. Neurofilament light chain levels in plasma were elevated, implying ongoing axonal injury and neurodegeneration. Thus, we provide confirmatory evidence of a second biallelic variant in an infant with a severe neurological syndrome and suggest that the in-frame deletion causes instability and subsequent degeneration of SOD1. We highlight the importance of the valine residues at positions V119-120, and suggest possible implications for future therapeutics research.
Collapse
Affiliation(s)
- Shlomit Ezer
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel 9112001.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel 9112001
| | - Muhannad Daana
- Child Development Centers, Clalit Health Care Services, Jerusalem District, Israel
| | - Julien H Park
- Department of Clinical Science, Neurosciences, Umeå University, 901 87 Umeå, Sweden.,Department of General Pediatrics, University of Münster, 48149 Münster, Germany
| | - Shira Yanovsky-Dagan
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel 9112001
| | - Ulrika Nordström
- Department of Clinical Science, Neurosciences, Umeå University, 901 87 Umeå, Sweden
| | - Adily Basal
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel 9112001
| | - Simon Edvardson
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel 9112001.,Pediatric Neurology Unit, Hadassah Medical Organization, Jerusalem, Israel 9112001
| | - Ann Saada
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel 9112001.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel 9112001
| | - Markus Otto
- Department of Neurology, University Clinic, 89081 Ulm, Germany.,Department of Neurology, University Clinic, 06120 Halle (Saale), Germany
| | - Vardiella Meiner
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel 9112001.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel 9112001
| | - Stefan L Marklund
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, 907 36 Umeå, Sweden
| | - Peter Munch Andersen
- Department of Clinical Science, Neurosciences, Umeå University, 901 87 Umeå, Sweden
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Organization, Jerusalem, Israel 9112001.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel 9112001
| |
Collapse
|
10
|
Trist BG, Hilton JB, Hare DJ, Crouch PJ, Double KL. Superoxide Dismutase 1 in Health and Disease: How a Frontline Antioxidant Becomes Neurotoxic. Angew Chem Int Ed Engl 2021; 60:9215-9246. [PMID: 32144830 PMCID: PMC8247289 DOI: 10.1002/anie.202000451] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 12/11/2022]
Abstract
Cu/Zn superoxide dismutase (SOD1) is a frontline antioxidant enzyme catalysing superoxide breakdown and is important for most forms of eukaryotic life. The evolution of aerobic respiration by mitochondria increased cellular production of superoxide, resulting in an increased reliance upon SOD1. Consistent with the importance of SOD1 for cellular health, many human diseases of the central nervous system involve perturbations in SOD1 biology. But far from providing a simple demonstration of how disease arises from SOD1 loss-of-function, attempts to elucidate pathways by which atypical SOD1 biology leads to neurodegeneration have revealed unexpectedly complex molecular characteristics delineating healthy, functional SOD1 protein from that which likely contributes to central nervous system disease. This review summarises current understanding of SOD1 biology from SOD1 genetics through to protein function and stability.
Collapse
Affiliation(s)
- Benjamin G. Trist
- Brain and Mind Centre and Discipline of PharmacologyThe University of Sydney, CamperdownSydneyNew South Wales2050Australia
| | - James B. Hilton
- Department of Pharmacology and TherapeuticsThe University of MelbourneParkvilleVictoria3052Australia
| | - Dominic J. Hare
- Brain and Mind Centre and Discipline of PharmacologyThe University of Sydney, CamperdownSydneyNew South Wales2050Australia
- School of BioSciencesThe University of MelbourneParkvilleVictoria3052Australia
- Atomic Medicine InitiativeThe University of Technology SydneyBroadwayNew South Wales2007Australia
| | - Peter J. Crouch
- Department of Pharmacology and TherapeuticsThe University of MelbourneParkvilleVictoria3052Australia
| | - Kay L. Double
- Brain and Mind Centre and Discipline of PharmacologyThe University of Sydney, CamperdownSydneyNew South Wales2050Australia
| |
Collapse
|
11
|
Trist BG, Hilton JB, Hare DJ, Crouch PJ, Double KL. Superoxide Dismutase 1 in Health and Disease: How a Frontline Antioxidant Becomes Neurotoxic. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Benjamin G. Trist
- Brain and Mind Centre and Discipline of Pharmacology The University of Sydney, Camperdown Sydney New South Wales 2050 Australia
| | - James B. Hilton
- Department of Pharmacology and Therapeutics The University of Melbourne Parkville Victoria 3052 Australia
| | - Dominic J. Hare
- Brain and Mind Centre and Discipline of Pharmacology The University of Sydney, Camperdown Sydney New South Wales 2050 Australia
- School of BioSciences The University of Melbourne Parkville Victoria 3052 Australia
- Atomic Medicine Initiative The University of Technology Sydney Broadway New South Wales 2007 Australia
| | - Peter J. Crouch
- Department of Pharmacology and Therapeutics The University of Melbourne Parkville Victoria 3052 Australia
| | - Kay L. Double
- Brain and Mind Centre and Discipline of Pharmacology The University of Sydney, Camperdown Sydney New South Wales 2050 Australia
| |
Collapse
|
12
|
Feneberg E, Turner MR, Ansorge O, Talbot K. Amyotrophic lateral sclerosis with a heterozygous D91A SOD1 variant and classical ALS-TDP neuropathology. Neurology 2020; 95:595-596. [DOI: 10.1212/wnl.0000000000010587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/15/2020] [Indexed: 11/15/2022] Open
|
13
|
Olesen MN, Wuolikainen A, Nilsson AC, Wirenfeldt M, Forsberg K, Madsen JS, Lillevang ST, Brandslund I, Andersen PM, Asgari N. Inflammatory profiles relate to survival in subtypes of amyotrophic lateral sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:e697. [PMID: 32123048 PMCID: PMC7136052 DOI: 10.1212/nxi.0000000000000697] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/23/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate inflammatory cytokines in patients with motor neuron disease (MND) evaluating the putative contribution of amyotrophic lateral sclerosis (ALS)-causing gene variants. METHODS This study is a retrospective case series with prospective follow-up (1994-2016) of 248 patients with MND, of whom 164 had ALS who were screened for mutations in the genes for SOD1 and C9orf72. Paired CSF and plasma were collected at the diagnostic evaluation before treatment. A panel of cytokines were measured blindly via digital ELISA on the Simoa platform. RESULTS Time from disease onset to death was longer for patients with ALS-causing SOD1 mutations (mSOD1, n = 24) than those with C9orf72 hexanucleotide repeat expansion (C9orf72HRE) ALS (n = 19; q = 0.001) and other ALS (OALS) (n = 119; q = 0.0008). Patients with OALS had higher CSF tumor necrosis factor alpha (TNF-α) compared with those with C9orf72HRE ALS (q = 0.014). Patients with C9orf72HRE ALS had higher CSF interferon alpha compared with those with OALS and mSOD1 ALS (q = 0.042 and q = 0.042). In patients with ALS, the survival was negatively correlated with plasma interleukin (IL) 10 (hazard ratio [HR] 1.17, 95% CI 1.05-1.30). Plasma TNF-α, IL-10, and TNF-related apoptosis-inducing ligand (TRAIL) (HR 1.01 [1.00-1.02], 1.15 [1.02-1.30], and 1.01 [1.00-1.01], respectively) of patients with OALS, plasma IL-1β (HR 5.90 [1.27-27.5]) of patients with C9orf72HRE ALS, and CSF TRAIL (10.5 [1.12-98.6]) of patients with mSOD1 ALS all correlated negatively with survival. CONCLUSIONS Differences in survival times in ALS subtypes were correlated with cytokine levels, suggesting specific immune responses related to ALS genetic variants.
Collapse
Affiliation(s)
- Mads Nikolaj Olesen
- From the Institutes of Regional Health Research and Molecular Medicine (M.N.O., N.A.), University of Southern Denmark; Departments of Neurology (M.N.O.), Slagelse Hospital & Biochemistry & Immunology, Lillebaelt Hospital, Vejle, Denmark; Department of Pharmacology and Clinical Neuroscience (A.W., K.F., P.M.A.), Umeå University, Sweden; Department of Clinical Immunology (A.C.N., S.T.L.), Odense University Hospital, Denmark; Department of Pathology (M.W.), Odense University Hospital, Denmark; Biochemistry & Immunology (J.S.M., I.B.), Lillebaelt Hospital, Vejle, Denmark; Institute of Regional Health Research (J.S.M., I.B.), University of Southern Denmark, Odense; Department of Neurology (N.A.), Slagelse Hospital; and OPEN, Odense Patient Data Explorative Network (N.A.), Odense University Hospital, Denmark
| | - Anna Wuolikainen
- From the Institutes of Regional Health Research and Molecular Medicine (M.N.O., N.A.), University of Southern Denmark; Departments of Neurology (M.N.O.), Slagelse Hospital & Biochemistry & Immunology, Lillebaelt Hospital, Vejle, Denmark; Department of Pharmacology and Clinical Neuroscience (A.W., K.F., P.M.A.), Umeå University, Sweden; Department of Clinical Immunology (A.C.N., S.T.L.), Odense University Hospital, Denmark; Department of Pathology (M.W.), Odense University Hospital, Denmark; Biochemistry & Immunology (J.S.M., I.B.), Lillebaelt Hospital, Vejle, Denmark; Institute of Regional Health Research (J.S.M., I.B.), University of Southern Denmark, Odense; Department of Neurology (N.A.), Slagelse Hospital; and OPEN, Odense Patient Data Explorative Network (N.A.), Odense University Hospital, Denmark
| | - Anna Christine Nilsson
- From the Institutes of Regional Health Research and Molecular Medicine (M.N.O., N.A.), University of Southern Denmark; Departments of Neurology (M.N.O.), Slagelse Hospital & Biochemistry & Immunology, Lillebaelt Hospital, Vejle, Denmark; Department of Pharmacology and Clinical Neuroscience (A.W., K.F., P.M.A.), Umeå University, Sweden; Department of Clinical Immunology (A.C.N., S.T.L.), Odense University Hospital, Denmark; Department of Pathology (M.W.), Odense University Hospital, Denmark; Biochemistry & Immunology (J.S.M., I.B.), Lillebaelt Hospital, Vejle, Denmark; Institute of Regional Health Research (J.S.M., I.B.), University of Southern Denmark, Odense; Department of Neurology (N.A.), Slagelse Hospital; and OPEN, Odense Patient Data Explorative Network (N.A.), Odense University Hospital, Denmark
| | - Martin Wirenfeldt
- From the Institutes of Regional Health Research and Molecular Medicine (M.N.O., N.A.), University of Southern Denmark; Departments of Neurology (M.N.O.), Slagelse Hospital & Biochemistry & Immunology, Lillebaelt Hospital, Vejle, Denmark; Department of Pharmacology and Clinical Neuroscience (A.W., K.F., P.M.A.), Umeå University, Sweden; Department of Clinical Immunology (A.C.N., S.T.L.), Odense University Hospital, Denmark; Department of Pathology (M.W.), Odense University Hospital, Denmark; Biochemistry & Immunology (J.S.M., I.B.), Lillebaelt Hospital, Vejle, Denmark; Institute of Regional Health Research (J.S.M., I.B.), University of Southern Denmark, Odense; Department of Neurology (N.A.), Slagelse Hospital; and OPEN, Odense Patient Data Explorative Network (N.A.), Odense University Hospital, Denmark
| | - Karin Forsberg
- From the Institutes of Regional Health Research and Molecular Medicine (M.N.O., N.A.), University of Southern Denmark; Departments of Neurology (M.N.O.), Slagelse Hospital & Biochemistry & Immunology, Lillebaelt Hospital, Vejle, Denmark; Department of Pharmacology and Clinical Neuroscience (A.W., K.F., P.M.A.), Umeå University, Sweden; Department of Clinical Immunology (A.C.N., S.T.L.), Odense University Hospital, Denmark; Department of Pathology (M.W.), Odense University Hospital, Denmark; Biochemistry & Immunology (J.S.M., I.B.), Lillebaelt Hospital, Vejle, Denmark; Institute of Regional Health Research (J.S.M., I.B.), University of Southern Denmark, Odense; Department of Neurology (N.A.), Slagelse Hospital; and OPEN, Odense Patient Data Explorative Network (N.A.), Odense University Hospital, Denmark
| | - Jonna Skov Madsen
- From the Institutes of Regional Health Research and Molecular Medicine (M.N.O., N.A.), University of Southern Denmark; Departments of Neurology (M.N.O.), Slagelse Hospital & Biochemistry & Immunology, Lillebaelt Hospital, Vejle, Denmark; Department of Pharmacology and Clinical Neuroscience (A.W., K.F., P.M.A.), Umeå University, Sweden; Department of Clinical Immunology (A.C.N., S.T.L.), Odense University Hospital, Denmark; Department of Pathology (M.W.), Odense University Hospital, Denmark; Biochemistry & Immunology (J.S.M., I.B.), Lillebaelt Hospital, Vejle, Denmark; Institute of Regional Health Research (J.S.M., I.B.), University of Southern Denmark, Odense; Department of Neurology (N.A.), Slagelse Hospital; and OPEN, Odense Patient Data Explorative Network (N.A.), Odense University Hospital, Denmark
| | - Soeren Thue Lillevang
- From the Institutes of Regional Health Research and Molecular Medicine (M.N.O., N.A.), University of Southern Denmark; Departments of Neurology (M.N.O.), Slagelse Hospital & Biochemistry & Immunology, Lillebaelt Hospital, Vejle, Denmark; Department of Pharmacology and Clinical Neuroscience (A.W., K.F., P.M.A.), Umeå University, Sweden; Department of Clinical Immunology (A.C.N., S.T.L.), Odense University Hospital, Denmark; Department of Pathology (M.W.), Odense University Hospital, Denmark; Biochemistry & Immunology (J.S.M., I.B.), Lillebaelt Hospital, Vejle, Denmark; Institute of Regional Health Research (J.S.M., I.B.), University of Southern Denmark, Odense; Department of Neurology (N.A.), Slagelse Hospital; and OPEN, Odense Patient Data Explorative Network (N.A.), Odense University Hospital, Denmark
| | - Ivan Brandslund
- From the Institutes of Regional Health Research and Molecular Medicine (M.N.O., N.A.), University of Southern Denmark; Departments of Neurology (M.N.O.), Slagelse Hospital & Biochemistry & Immunology, Lillebaelt Hospital, Vejle, Denmark; Department of Pharmacology and Clinical Neuroscience (A.W., K.F., P.M.A.), Umeå University, Sweden; Department of Clinical Immunology (A.C.N., S.T.L.), Odense University Hospital, Denmark; Department of Pathology (M.W.), Odense University Hospital, Denmark; Biochemistry & Immunology (J.S.M., I.B.), Lillebaelt Hospital, Vejle, Denmark; Institute of Regional Health Research (J.S.M., I.B.), University of Southern Denmark, Odense; Department of Neurology (N.A.), Slagelse Hospital; and OPEN, Odense Patient Data Explorative Network (N.A.), Odense University Hospital, Denmark
| | - Peter Munch Andersen
- From the Institutes of Regional Health Research and Molecular Medicine (M.N.O., N.A.), University of Southern Denmark; Departments of Neurology (M.N.O.), Slagelse Hospital & Biochemistry & Immunology, Lillebaelt Hospital, Vejle, Denmark; Department of Pharmacology and Clinical Neuroscience (A.W., K.F., P.M.A.), Umeå University, Sweden; Department of Clinical Immunology (A.C.N., S.T.L.), Odense University Hospital, Denmark; Department of Pathology (M.W.), Odense University Hospital, Denmark; Biochemistry & Immunology (J.S.M., I.B.), Lillebaelt Hospital, Vejle, Denmark; Institute of Regional Health Research (J.S.M., I.B.), University of Southern Denmark, Odense; Department of Neurology (N.A.), Slagelse Hospital; and OPEN, Odense Patient Data Explorative Network (N.A.), Odense University Hospital, Denmark
| | - Nasrin Asgari
- From the Institutes of Regional Health Research and Molecular Medicine (M.N.O., N.A.), University of Southern Denmark; Departments of Neurology (M.N.O.), Slagelse Hospital & Biochemistry & Immunology, Lillebaelt Hospital, Vejle, Denmark; Department of Pharmacology and Clinical Neuroscience (A.W., K.F., P.M.A.), Umeå University, Sweden; Department of Clinical Immunology (A.C.N., S.T.L.), Odense University Hospital, Denmark; Department of Pathology (M.W.), Odense University Hospital, Denmark; Biochemistry & Immunology (J.S.M., I.B.), Lillebaelt Hospital, Vejle, Denmark; Institute of Regional Health Research (J.S.M., I.B.), University of Southern Denmark, Odense; Department of Neurology (N.A.), Slagelse Hospital; and OPEN, Odense Patient Data Explorative Network (N.A.), Odense University Hospital, Denmark.
| |
Collapse
|
14
|
Lian S, Zhao L, Xun X, Lou J, Li M, Li X, Wang S, Zhang L, Hu X, Bao Z. Genome-Wide Identification and Characterization of SODs in Zhikong Scallop Reveals Gene Expansion and Regulation Divergence after Toxic Dinoflagellate Exposure. Mar Drugs 2019; 17:md17120700. [PMID: 31842317 PMCID: PMC6949909 DOI: 10.3390/md17120700] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
As filter-feeding animals mainly ingesting microalgae, bivalves could accumulate paralytic shellfish toxins (PSTs) produced by harmful algae through diet. To protect themselves from the toxic effects of PSTs, especially the concomitant oxidative damage, the production of superoxide dismutase (SOD), which is the only eukaryotic metalloenzyme capable of detoxifying superoxide, may assist with toxin tolerance in bivalves. To better understand this process, in the present study, we performed the first systematic analysis of SOD genes in bivalve Chlamys farreri, an important aquaculture species in China. A total of six Cu/Zn-SODs (SOD1-6) and two Mn-SODs (SOD7, SOD8) were identified in C. farreri, with gene expansion being revealed in Cu/Zn-SODs. In scallops exposed to two different PSTs-producing dinoflagellates, Alexandrium minutum and A. catenella, expression regulation of SOD genes was analyzed in the top ranked toxin-rich organs, the hepatopancreas and the kidney. In hepatopancreas, which mainly accumulates the incoming PSTs, all of the six Cu/Zn-SODs showed significant alterations after A. minutum exposure, with SOD1, 2, 3, 5, and 6 being up-regulated, and SOD4 being down-regulated, while no significant change was detected in Mn-SODs. After A. catenella exposure, up-regulation was observed in SOD2, 4, 6, and 8, and SOD7 was down-regulated. In the kidney, where PSTs transformation occurs, SOD4, 5, 6, and 8 were up-regulated, and SOD7 was down-regulated in response to A. minutum feeding. After A. catenella exposure, all the Cu/Zn-SODs except SOD1 were up-regulated, and SOD7 was down-regulated in kidney. Overall, in scallops after ingesting different toxic algae, SOD up-regulation mainly occurred in the expanded Cu/Zn-SOD group, and SOD6 was the only member being up-regulated in both toxic organs, which also showed the highest fold change among all the SODs, implying the importance of SOD6 in protecting scallops from the stress of PSTs. Our results suggest the diverse function of scallop SODs in response to the PST-producing algae challenge, and the expansion of Cu/Zn-SODs might be implicated in the adaptive evolution of scallops or bivalves with respect to antioxidant defense against the ingested toxic algae.
Collapse
Affiliation(s)
- Shanshan Lian
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (S.L.); (L.Z.); (X.X.); (J.L.); (M.L.); (X.L.); (S.W.); (L.Z.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Liang Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (S.L.); (L.Z.); (X.X.); (J.L.); (M.L.); (X.L.); (S.W.); (L.Z.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaogang Xun
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (S.L.); (L.Z.); (X.X.); (J.L.); (M.L.); (X.L.); (S.W.); (L.Z.); (Z.B.)
| | - Jiarun Lou
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (S.L.); (L.Z.); (X.X.); (J.L.); (M.L.); (X.L.); (S.W.); (L.Z.); (Z.B.)
| | - Moli Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (S.L.); (L.Z.); (X.X.); (J.L.); (M.L.); (X.L.); (S.W.); (L.Z.); (Z.B.)
| | - Xu Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (S.L.); (L.Z.); (X.X.); (J.L.); (M.L.); (X.L.); (S.W.); (L.Z.); (Z.B.)
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (S.L.); (L.Z.); (X.X.); (J.L.); (M.L.); (X.L.); (S.W.); (L.Z.); (Z.B.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (S.L.); (L.Z.); (X.X.); (J.L.); (M.L.); (X.L.); (S.W.); (L.Z.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (S.L.); (L.Z.); (X.X.); (J.L.); (M.L.); (X.L.); (S.W.); (L.Z.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: ; Tel.: +86-0532-8203-1970; Fax: +86-0532-8203-1802
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (S.L.); (L.Z.); (X.X.); (J.L.); (M.L.); (X.L.); (S.W.); (L.Z.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
15
|
Draper ACE, Wilson Z, Maile C, Faccenda D, Campanella M, Piercy RJ. Species-specific consequences of an E40K missense mutation in superoxide dismutase 1 (SOD1). FASEB J 2019; 34:458-473. [PMID: 31914665 DOI: 10.1096/fj.201901455r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 11/11/2022]
Abstract
A glutamic acid to lysine (E40K) residue substitution in superoxide dismutase 1 (SOD1) is associated with canine degenerative myelopathy: the only naturally occurring large animal model of amyotrophic lateral sclerosis (ALS). The E40 residue is highly conserved across mammals, except the horse, which naturally carries the (dog mutant) K40 residue. Here we hypothesized that in vitro expression of mutant dog SOD1 would recapitulate features of human ALS (ie, SOD1 protein aggregation, reduced cell viability, perturbations in mitochondrial morphology and membrane potential, reduced ATP production, and increased superoxide ion levels); further, we hypothesized that an equivalent equine SOD1 variant would share similar perturbations in vitro, thereby explain horses' susceptibility to certain neurodegenerative diseases. As in human ALS, expression of mutant dog SOD1 was associated with statistically significant increased aggregate formation, raised superoxide levels (ROS), and altered mitochondrial morphology (increased branching (form factor)), when compared to wild-type dog SOD1-expressing cells. Similar deficits were not detected in cells expressing the equivalent horse SOD1 variant. Our data helps explain the ALS-associated cellular phenotype of dogs expressing the mutant SOD1 protein and reveals that species-specific sequence conservation does not necessarily predict pathogenicity. The work improves understanding of the etiopathogenesis of canine degenerative myelopathy.
Collapse
Affiliation(s)
- Alexandra C E Draper
- Comparative Neuromuscular Disease Laboratory, Royal Veterinary College, University of London, London, UK
| | - Zoe Wilson
- Comparative Neuromuscular Disease Laboratory, Royal Veterinary College, University of London, London, UK
| | - Charlotte Maile
- Comparative Neuromuscular Disease Laboratory, Royal Veterinary College, University of London, London, UK
| | - Danilo Faccenda
- Mitochondrial Cell Biology and Pharmaceutical Research Unit, Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Michelangelo Campanella
- Mitochondrial Cell Biology and Pharmaceutical Research Unit, Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK.,University College London Consortium for Mitochondrial Research, University College London, University of London, London, UK
| | - Richard J Piercy
- Comparative Neuromuscular Disease Laboratory, Royal Veterinary College, University of London, London, UK
| |
Collapse
|
16
|
Park JH, Elpers C, Reunert J, McCormick ML, Mohr J, Biskup S, Schwartz O, Rust S, Grüneberg M, Seelhöfer A, Schara U, Boltshauser E, Spitz DR, Marquardt T. SOD1 deficiency: a novel syndrome distinct from amyotrophic lateral sclerosis. Brain 2019; 142:2230-2237. [PMID: 31332433 PMCID: PMC6658856 DOI: 10.1093/brain/awz182] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/22/2019] [Accepted: 04/28/2019] [Indexed: 11/13/2022] Open
Abstract
Superoxide dismutase 1 (SOD1) is the principal cytoplasmic superoxide dismutase in humans and plays a major role in redox potential regulation. It catalyses the transformation of the superoxide anion (O2•-) into hydrogen peroxide. Heterozygous variants in SOD1 are a common cause of familial amyotrophic lateral sclerosis. In this study we describe the homozygous truncating variant c.335dupG (p.C112Wfs*11) in SOD1 that leads to total absence of enzyme activity. The resulting phenotype is severe and marked by progressive loss of motor abilities, tetraspasticity with predominance in the lower extremities, mild cerebellar atrophy, and hyperekplexia-like symptoms. Heterozygous carriers have a markedly reduced enzyme activity when compared to wild-type controls but show no overt neurologic phenotype. These results are in contrast with the previously proposed theory that a loss of function is the underlying mechanism in SOD1-related motor neuron disease and should be considered before application of previously proposed SOD1 silencing as a treatment option for amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Julien H Park
- Department of General Paediatrics, University of Münster, Münster, Germany
| | - Christiane Elpers
- Department of General Paediatrics, University of Münster, Münster, Germany
| | - Janine Reunert
- Department of General Paediatrics, University of Münster, Münster, Germany
| | - Michael L McCormick
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa, USA
| | - Julia Mohr
- CeGaT GmbH und Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Saskia Biskup
- CeGaT GmbH und Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Oliver Schwartz
- Department of General Paediatrics, University of Münster, Münster, Germany
| | - Stephan Rust
- Department of General Paediatrics, University of Münster, Münster, Germany
| | - Marianne Grüneberg
- Department of General Paediatrics, University of Münster, Münster, Germany
| | - Anja Seelhöfer
- Department of General Paediatrics, University of Münster, Münster, Germany
| | - Ulrike Schara
- Department of Paediatric Neurology, University Hospital Essen, Essen, Germany
| | - Eugen Boltshauser
- Department of Paediatric Neurology, University Children’s Hospital, Zürich, Switzerland
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa, USA
| | - Thorsten Marquardt
- Department of General Paediatrics, University of Münster, Münster, Germany
| |
Collapse
|
17
|
Forsberg K, Graffmo K, Pakkenberg B, Weber M, Nielsen M, Marklund S, Brännström T, Andersen PM. Misfolded SOD1 inclusions in patients with mutations in C9orf72 and other ALS/FTD-associated genes. J Neurol Neurosurg Psychiatry 2019; 90:861-869. [PMID: 30992335 PMCID: PMC6691870 DOI: 10.1136/jnnp-2018-319386] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 02/24/2019] [Accepted: 03/04/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE A hallmark of amyotrophic lateral sclerosis (ALS) caused by mutations in superoxide dismutase-1 (SOD1) are inclusions containing SOD1 in motor neurons. Here, we searched for SOD1-positive inclusions in 29 patients carrying ALS-linked mutations in six other genes. METHODS A panel of antibodies that specifically recognise misfolded SOD1 species were used for immunohistochemical investigations of autopsy tissue. RESULTS The 18 patients with hexanucleotide-repeat-expansions in C9orf72 had inclusions of misfolded wild type (WT) SOD1WT in spinal motor neurons. Similar inclusions were occasionally observed in medulla oblongata and in the motor cortex and frontal lobe. Patients with mutations in FUS, KIF5A, NEK1, ALSIN or VAPB, carried similar SOD1WT inclusions. Minute amounts of misSOD1WT inclusions were detected in 2 of 20 patients deceased from non-neurological causes and in 4 of 10 patients with other neurodegenerative diseases. Comparison was made with 17 patients with 9 different SOD1 mutations. Morphologically, the inclusions in patients with mutations in C9orf72HRE, FUS, KIF5A, NEK1, VAPB and ALSIN resembled inclusions in patients carrying the wildtype-like SOD1D90A mutation, whereas patients carrying unstable SOD1 mutations (A4V, V5M, D76Y, D83G, D101G, G114A, G127X, L144F) had larger skein-like SOD1-positive inclusions. CONCLUSIONS AND RELEVANCE Abundant inclusions containing misfolded SOD1WT are found in spinal and cortical motor neurons in patients carrying mutations in six ALS-causing genes other than SOD1. This suggests that misfolding of SOD1WT can be part of a common downstream event that may be pathogenic. The new anti-SOD1 therapeutics in development may have applications for a broader range of patients.
Collapse
Affiliation(s)
- Karin Forsberg
- Medical Biosciences, Umeå University, Umeå, Sweden.,Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | | | - Bente Pakkenberg
- Institute of Clinical Medicine, Copenhagen University, Copenhagen, Denmark
| | - Markus Weber
- Neuromuscular Diseases Unit, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | | | | | | | | |
Collapse
|
18
|
Keskin I, Forsgren E, Lehmann M, Andersen PM, Brännström T, Lange DJ, Synofzik M, Nordström U, Zetterström P, Marklund SL, Gilthorpe JD. The molecular pathogenesis of superoxide dismutase 1-linked ALS is promoted by low oxygen tension. Acta Neuropathol 2019; 138:85-101. [PMID: 30863976 PMCID: PMC6570705 DOI: 10.1007/s00401-019-01986-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/25/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022]
Abstract
Mutations in superoxide dismutase 1 (SOD1) cause amyotrophic lateral sclerosis (ALS). Disease pathogenesis is linked to destabilization, disorder and aggregation of the SOD1 protein. However, the non-genetic factors that promote disorder and the subsequent aggregation of SOD1 have not been studied. Mainly located to the reducing cytosol, mature SOD1 contains an oxidized disulfide bond that is important for its stability. Since O2 is required for formation of the bond, we reasoned that low O2 tension might be a risk factor for the pathological changes associated with ALS development. By combining biochemical approaches in an extensive range of genetically distinct patient-derived cell lines, we show that the disulfide bond is an Achilles heel of the SOD1 protein. Culture of patient-derived fibroblasts, astrocytes, and induced pluripotent stem cell-derived mixed motor neuron and astrocyte cultures (MNACs) under low O2 tensions caused reductive bond cleavage and increases in disordered SOD1. The effects were greatest in cells derived from patients carrying ALS-linked mutations in SOD1. However, significant increases also occurred in wild-type SOD1 in cultures derived from non-disease controls, and patients carrying mutations in other common ALS-linked genes. Compared to fibroblasts, MNACs showed far greater increases in SOD1 disorder and even aggregation of mutant SOD1s, in line with the vulnerability of the motor system to SOD1-mediated neurotoxicity. Our results show for the first time that O2 tension is a principal determinant of SOD1 stability in human patient-derived cells. Furthermore, we provide a mechanism by which non-genetic risk factors for ALS, such as aging and other conditions causing reduced vascular perfusion, could promote disease initiation and progression.
Collapse
Affiliation(s)
- Isil Keskin
- Department of Medical Biosciences, Pathology, Umeå University, 90185, Umeå, Sweden
| | - Elin Forsgren
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 90187, Umeå, Sweden
| | - Manuela Lehmann
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 90187, Umeå, Sweden
| | - Peter M Andersen
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 90187, Umeå, Sweden
| | - Thomas Brännström
- Department of Medical Biosciences, Pathology, Umeå University, 90185, Umeå, Sweden
| | - Dale J Lange
- Department of Neurology, Hospital for Special Surgery and Weill Cornell Medical Center, New York, NY, 10021, USA
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Research Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
| | - Ulrika Nordström
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 90187, Umeå, Sweden
| | - Per Zetterström
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, 90185, Umeå, Sweden
| | - Stefan L Marklund
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, 90185, Umeå, Sweden.
| | - Jonathan D Gilthorpe
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 90187, Umeå, Sweden.
| |
Collapse
|
19
|
Lin HX, Tao QQ, Wei Q, Chen CX, Chen YC, Li HF, Gitler AD, Wu ZY. Identification and functional analysis of novel mutations in the SOD1 gene in Chinese patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:222-228. [PMID: 30887850 DOI: 10.1080/21678421.2019.1582668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by selective involvement of motor neurons in the central nervous system (CNS). The most common causative gene of ALS in the Chinese population is the Cu/Zn superoxide dismutase 1 (SOD1) gene, which accounts for 20-42.9% of familial ALS (FALS) and 1-2% of sporadic ALS (SALS) cases. In this study, we identify three novel SOD1 mutations, Gly17Cys, Pro75Ser, and His121Gln, in four ALS pedigrees. A functional analysis was performed, and the results showed that all three mutations could lead to the formation of misfolded proteins. In addition, genotype-phenotype correlations in these patients are also described. Our study helps to characterize the genotype and phenotype of ALS with SOD1 mutations.
Collapse
Affiliation(s)
- Hui-Xia Lin
- a Department of Neurology and Institute of Neurology , First Affiliated Hospital Fujian Medical University , Fuzhou , China
| | - Qing-Qing Tao
- b Department of Neurology and Research Centre of Neurology, Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province , Zhejiang University School of Medicine , Hangzhou , China , and
| | - Qiao Wei
- b Department of Neurology and Research Centre of Neurology, Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province , Zhejiang University School of Medicine , Hangzhou , China , and
| | - Cong-Xin Chen
- a Department of Neurology and Institute of Neurology , First Affiliated Hospital Fujian Medical University , Fuzhou , China
| | - Yu-Chao Chen
- b Department of Neurology and Research Centre of Neurology, Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province , Zhejiang University School of Medicine , Hangzhou , China , and
| | - Hong-Fu Li
- b Department of Neurology and Research Centre of Neurology, Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province , Zhejiang University School of Medicine , Hangzhou , China , and
| | - Aaron D Gitler
- c Department of Genetics , Stanford University School of Medicine , Stanford , CA , USA
| | - Zhi-Ying Wu
- a Department of Neurology and Institute of Neurology , First Affiliated Hospital Fujian Medical University , Fuzhou , China.,b Department of Neurology and Research Centre of Neurology, Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province , Zhejiang University School of Medicine , Hangzhou , China , and
| |
Collapse
|