1
|
Roscoe S, Allen SP, McDermott C, Stavroulakis T. Exploring the role of anthropometric measurements to assess nutritional status in amyotrophic lateral sclerosis: a longitudinal prospective cohort study. Amyotroph Lateral Scler Frontotemporal Degener 2024:1-14. [PMID: 39676614 DOI: 10.1080/21678421.2024.2434176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 12/17/2024]
Abstract
OBJECTIVE To observe longitudinal correlations between limb anthropometry against weight, BMI and functional decline in patients with amyotrophic lateral sclerosis. METHODS A longitudinal, prospective, cohort study was undertaken. Four consecutive measurements of weight, height, triceps skinfold thickness (TSF), mid-upper arm (MUAC) and calf circumferences were collected at three-monthly intervals. Fat- and lean body mass were estimated using measurements of TSF and derivations of arm muscle area, respectively. Correlation analyses indicated associations between anthropometric assessments and functional decline (ALSFRS-R). Longitudinal changes were assessed using repeated measures analyses. RESULTS Data from 18 participants was analyzed. At enrollment, weight positively correlated with MUAC (n = 17, p = 0.0001), arm muscle area (n = 17, p = 0.04) and calf circumference (n = 17, p < 0.0001). The ALSFRS-R score negatively correlated with weight (n = 17, p = 0.03), MUAC (n = 18, p = 0.01), TSF (n = 18, p = 0.04), and calf circumference (n = 18, p = 0.003). Function significantly declined by a difference of 6.3 points per month (p = 0.009). A positive correlation was observed between the changes in weight and calf circumference over nine months (r = 0.70, p = 0.02, n = 10). CONCLUSION Limb anthropometric measurements may be surrogate indicators of weight and BMI; TSF may be a practical, reliable indicator of fat mass, whilst changes in calf circumference may be alternatively used to monitor changes in nutritional status in the clinic.
Collapse
Affiliation(s)
- Sarah Roscoe
- Division of Neuroscience, School of Medicine and Population Health, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Scott P Allen
- Division of Neuroscience, School of Medicine and Population Health, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Christopher McDermott
- Division of Neuroscience, School of Medicine and Population Health, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Theocharis Stavroulakis
- Division of Neuroscience, School of Medicine and Population Health, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
2
|
Wong JPH, Blazev R, Ng YK, Goodman CA, Montgomery MK, Watt KI, Carl CS, Watt MJ, Voldstedlund CT, Richter EA, Crouch PJ, Steyn FJ, Ngo ST, Parker BL. Characterization of the skeletal muscle arginine methylome in health and disease reveals remodeling in amyotrophic lateral sclerosis. FASEB J 2024; 38:e23647. [PMID: 38787599 DOI: 10.1096/fj.202400045r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/04/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Arginine methylation is a protein posttranslational modification important for the development of skeletal muscle mass and function. Despite this, our understanding of the regulation of arginine methylation under settings of health and disease remains largely undefined. Here, we investigated the regulation of arginine methylation in skeletal muscles in response to exercise and hypertrophic growth, and in diseases involving metabolic dysfunction and atrophy. We report a limited regulation of arginine methylation under physiological settings that promote muscle health, such as during growth and acute exercise, nor in disease models of insulin resistance. In contrast, we saw a significant remodeling of asymmetric dimethylation in models of atrophy characterized by the loss of innervation, including in muscle biopsies from patients with myotrophic lateral sclerosis (ALS). Mass spectrometry-based quantification of the proteome and asymmetric arginine dimethylome of skeletal muscle from individuals with ALS revealed the largest compendium of protein changes with the identification of 793 regulated proteins, and novel site-specific changes in asymmetric dimethyl arginine (aDMA) of key sarcomeric and cytoskeletal proteins. Finally, we show that in vivo overexpression of PRMT1 and aDMA resulted in increased fatigue resistance and functional recovery in mice. Our study provides evidence for asymmetric dimethylation as a regulator of muscle pathophysiology and presents a valuable proteomics resource and rationale for numerous methylated and nonmethylated proteins, including PRMT1, to be pursued for therapeutic development in ALS.
Collapse
Affiliation(s)
- Julian P H Wong
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ronnie Blazev
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Yaan-Kit Ng
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Craig A Goodman
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Magdalene K Montgomery
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kevin I Watt
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Victoria, Australia
- The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Christian S Carl
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Matthew J Watt
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christian T Voldstedlund
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Erik A Richter
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Peter J Crouch
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Frederik J Steyn
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Shyuan T Ngo
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Benjamin L Parker
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Janse van Mantgem MR, Soors D'Ancona ML, Meyjes M, Van Den Berg LH, Steenhagen E, Kok A, Van Eijk RPA. A comparison between bioelectrical impedance analysis and air-displacement plethysmography in assessing fat-free mass in patients with motor neurone diseases: a cross-sectional study. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:326-335. [PMID: 38265049 DOI: 10.1080/21678421.2023.2300963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
AIM To determine the validity of bioelectrical impedance analysis (BIA) in quantifying fat-free mass (FFM) compared to air-displacement plethysmography (ADP) in patients with a motor neurone disease (MND). METHODS FFM of 140 patients diagnosed with MND was determined by ADP using the BodPod (i.e. the gold standard), and by BIA using the whole-body Bodystat. FFM values were translated to predicted resting energy expenditure (REE); the actual REE was measured using indirect calorimetry, resulting in a metabolic index. Validity of the BIA compared to the ADP was assessed using Bland-Altman analysis and Pearson's r. To assess the clinical relevance of differences, we evaluated changes in metabolic index and in individualized protein demand. RESULTS Despite the high correlation between ADP and BIA (r = 0.93), averaged across patients, the assessed mean fat-free mass was 51.7 kg (± 0.9) using ADP and 54.2 kg (± 1.0) using BIA. Hence, BIA overestimated fat-free mass by 2.5 kg (95% CI 1.8-3.2, p < 0.001). Clinically, an increased metabolic index would be more often underdiagnosed in patients with MND using BIA (31.4% according to BIA versus 44.2% according to ADP, p = 0.048). A clinically relevant overestimation of ≥ 15 g in protein demand was observed for 4 (2.9%) patients using BIA. CONCLUSIONS BIA systematically overestimates FFM in patients with MND. Although the differences are limited with ADP, underscoring the utility of BIA for research, overestimation of fat-free mass may have consequences for clinical decision-making, especially when interest lies in determining the metabolic index.
Collapse
Affiliation(s)
- Mark R Janse van Mantgem
- Department of Neurology, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Maaike L Soors D'Ancona
- Department of Neurology, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Dietetics, University Medical Centre Utrecht, Utrecht, The Netherlands, and
| | - Myrte Meyjes
- Department of Neurology, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Leonard H Van Den Berg
- Department of Dietetics, University Medical Centre Utrecht, Utrecht, The Netherlands, and
| | - Elles Steenhagen
- Department of Dietetics, University Medical Centre Utrecht, Utrecht, The Netherlands, and
| | - Annemieke Kok
- Department of Dietetics, University Medical Centre Utrecht, Utrecht, The Netherlands, and
| | - Ruben P A Van Eijk
- Department of Dietetics, University Medical Centre Utrecht, Utrecht, The Netherlands, and
- Biostatistics & Research Support, Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Holdom CJ, Janse van Mantgem MR, He J, Howe SL, McCombe PA, Fan D, van den Berg LH, Henderson RD, van Eijk R, Steyn FJ, Ngo ST. Variation in Resting Metabolic Rate Affects Identification of Metabolic Change in Geographically Distinct Cohorts of Patients With ALS. Neurology 2024; 102:e208117. [PMID: 38350046 DOI: 10.1212/wnl.0000000000208117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/16/2023] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Altered metabolism is observed in amyotrophic lateral sclerosis (ALS). However, without a standardized methodology to define metabolic changes, our understanding of factors contributing to and the clinical significance of altered metabolism in ALS is limited. METHODS We aimed to determine how geographic variation in metabolic rates influences estimates and accuracy of predicted resting energy expenditure (REE) in patients with ALS and controls, while validating the effectiveness of cohort-specific approaches in predicting altered metabolic rate in ALS. Participants from 3 geographically distinct sites across Australia, China, and the Netherlands underwent REE assessments, and we considered 22 unique equations for estimating REE. Analyses evaluated equation performance and the influence of demographics on metabolic status. Comparisons were made using standardized and local reference values to identify metabolic alterations. RESULTS 606 participants were included from Australia (patients with ALS: 140, controls: 154), the Netherlands (patients with ALS: 79, controls: 37) and China (patients with ALS: 67, controls: 129). Measured REE was variable across geographic cohorts, with fat-free mass contributing to this variation across all patients (p = 0.002 to p < 0.001). Of the 22 predication equations assessed, the Sabounchi Structure 4 (S4) equation performed relatively well across all control cohorts. Use of prediction thresholds generated using data from Australian controls generally increased the prevalence of hypermetabolism in Chinese (55%, [43%-67%]) and Dutch (44%, [33%-55%]) cases when compared with Australian cases (30%, [22%-38%]). Adjustment of prediction thresholds to consider geographically distinct characteristics from matched control cohorts resulted in a decrease in the proportion of hypermetabolic cases in Chinese and Dutch cohorts (25%-31% vs 55% and 20%-34% vs 43%-44%, respectively), and increased prevalence of hypometabolism in Dutch cases with ALS (1% to 8%-10%). DISCUSSION The identification of hypermetabolism in ALS is influenced by the formulae and demographic-specific prediction thresholds used for defining alterations in metabolic rate. A consensus approach is needed for identification of metabolic changes in ALS and will facilitate improved understanding of the cause and clinical significance of this in ALS.
Collapse
Affiliation(s)
- Cory J Holdom
- From the Australian Institute for Bioengineering and Nanotechnology (C.J.H., S.L.H., S.T.N.), The University of Queensland, Australia; Department of Neurology (M.R.J.M., R.P.A.E., L.H.B.), UMC Utrecht Brain Centre, University Medical Centre Utrecht, The Netherlands; Department of Neurology (D.F.), Peking University Third Hospital; Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases (D.F.), China; Centre for Clinical Research (P.A.M., R.D.H., F.J.S., S.T.N.), The University of Queensland; Department of Neurology (P.A.M., R.D.H., F.J.S., S.T.N.), Royal Brisbane and Women's Hospital, Australia; Biostatistics and Research Support (R.P.A.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, The Netherlands; and School of Biomedical Sciences (F.J.S.), The University of Queensland, Australia
| | - Mark R Janse van Mantgem
- From the Australian Institute for Bioengineering and Nanotechnology (C.J.H., S.L.H., S.T.N.), The University of Queensland, Australia; Department of Neurology (M.R.J.M., R.P.A.E., L.H.B.), UMC Utrecht Brain Centre, University Medical Centre Utrecht, The Netherlands; Department of Neurology (D.F.), Peking University Third Hospital; Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases (D.F.), China; Centre for Clinical Research (P.A.M., R.D.H., F.J.S., S.T.N.), The University of Queensland; Department of Neurology (P.A.M., R.D.H., F.J.S., S.T.N.), Royal Brisbane and Women's Hospital, Australia; Biostatistics and Research Support (R.P.A.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, The Netherlands; and School of Biomedical Sciences (F.J.S.), The University of Queensland, Australia
| | - Ji He
- From the Australian Institute for Bioengineering and Nanotechnology (C.J.H., S.L.H., S.T.N.), The University of Queensland, Australia; Department of Neurology (M.R.J.M., R.P.A.E., L.H.B.), UMC Utrecht Brain Centre, University Medical Centre Utrecht, The Netherlands; Department of Neurology (D.F.), Peking University Third Hospital; Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases (D.F.), China; Centre for Clinical Research (P.A.M., R.D.H., F.J.S., S.T.N.), The University of Queensland; Department of Neurology (P.A.M., R.D.H., F.J.S., S.T.N.), Royal Brisbane and Women's Hospital, Australia; Biostatistics and Research Support (R.P.A.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, The Netherlands; and School of Biomedical Sciences (F.J.S.), The University of Queensland, Australia
| | - Stephanie L Howe
- From the Australian Institute for Bioengineering and Nanotechnology (C.J.H., S.L.H., S.T.N.), The University of Queensland, Australia; Department of Neurology (M.R.J.M., R.P.A.E., L.H.B.), UMC Utrecht Brain Centre, University Medical Centre Utrecht, The Netherlands; Department of Neurology (D.F.), Peking University Third Hospital; Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases (D.F.), China; Centre for Clinical Research (P.A.M., R.D.H., F.J.S., S.T.N.), The University of Queensland; Department of Neurology (P.A.M., R.D.H., F.J.S., S.T.N.), Royal Brisbane and Women's Hospital, Australia; Biostatistics and Research Support (R.P.A.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, The Netherlands; and School of Biomedical Sciences (F.J.S.), The University of Queensland, Australia
| | - Pamela A McCombe
- From the Australian Institute for Bioengineering and Nanotechnology (C.J.H., S.L.H., S.T.N.), The University of Queensland, Australia; Department of Neurology (M.R.J.M., R.P.A.E., L.H.B.), UMC Utrecht Brain Centre, University Medical Centre Utrecht, The Netherlands; Department of Neurology (D.F.), Peking University Third Hospital; Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases (D.F.), China; Centre for Clinical Research (P.A.M., R.D.H., F.J.S., S.T.N.), The University of Queensland; Department of Neurology (P.A.M., R.D.H., F.J.S., S.T.N.), Royal Brisbane and Women's Hospital, Australia; Biostatistics and Research Support (R.P.A.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, The Netherlands; and School of Biomedical Sciences (F.J.S.), The University of Queensland, Australia
| | - Dongsheng Fan
- From the Australian Institute for Bioengineering and Nanotechnology (C.J.H., S.L.H., S.T.N.), The University of Queensland, Australia; Department of Neurology (M.R.J.M., R.P.A.E., L.H.B.), UMC Utrecht Brain Centre, University Medical Centre Utrecht, The Netherlands; Department of Neurology (D.F.), Peking University Third Hospital; Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases (D.F.), China; Centre for Clinical Research (P.A.M., R.D.H., F.J.S., S.T.N.), The University of Queensland; Department of Neurology (P.A.M., R.D.H., F.J.S., S.T.N.), Royal Brisbane and Women's Hospital, Australia; Biostatistics and Research Support (R.P.A.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, The Netherlands; and School of Biomedical Sciences (F.J.S.), The University of Queensland, Australia
| | - Leonard H van den Berg
- From the Australian Institute for Bioengineering and Nanotechnology (C.J.H., S.L.H., S.T.N.), The University of Queensland, Australia; Department of Neurology (M.R.J.M., R.P.A.E., L.H.B.), UMC Utrecht Brain Centre, University Medical Centre Utrecht, The Netherlands; Department of Neurology (D.F.), Peking University Third Hospital; Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases (D.F.), China; Centre for Clinical Research (P.A.M., R.D.H., F.J.S., S.T.N.), The University of Queensland; Department of Neurology (P.A.M., R.D.H., F.J.S., S.T.N.), Royal Brisbane and Women's Hospital, Australia; Biostatistics and Research Support (R.P.A.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, The Netherlands; and School of Biomedical Sciences (F.J.S.), The University of Queensland, Australia
| | - Robert D Henderson
- From the Australian Institute for Bioengineering and Nanotechnology (C.J.H., S.L.H., S.T.N.), The University of Queensland, Australia; Department of Neurology (M.R.J.M., R.P.A.E., L.H.B.), UMC Utrecht Brain Centre, University Medical Centre Utrecht, The Netherlands; Department of Neurology (D.F.), Peking University Third Hospital; Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases (D.F.), China; Centre for Clinical Research (P.A.M., R.D.H., F.J.S., S.T.N.), The University of Queensland; Department of Neurology (P.A.M., R.D.H., F.J.S., S.T.N.), Royal Brisbane and Women's Hospital, Australia; Biostatistics and Research Support (R.P.A.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, The Netherlands; and School of Biomedical Sciences (F.J.S.), The University of Queensland, Australia
| | - Ruben van Eijk
- From the Australian Institute for Bioengineering and Nanotechnology (C.J.H., S.L.H., S.T.N.), The University of Queensland, Australia; Department of Neurology (M.R.J.M., R.P.A.E., L.H.B.), UMC Utrecht Brain Centre, University Medical Centre Utrecht, The Netherlands; Department of Neurology (D.F.), Peking University Third Hospital; Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases (D.F.), China; Centre for Clinical Research (P.A.M., R.D.H., F.J.S., S.T.N.), The University of Queensland; Department of Neurology (P.A.M., R.D.H., F.J.S., S.T.N.), Royal Brisbane and Women's Hospital, Australia; Biostatistics and Research Support (R.P.A.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, The Netherlands; and School of Biomedical Sciences (F.J.S.), The University of Queensland, Australia
| | - Frederik J Steyn
- From the Australian Institute for Bioengineering and Nanotechnology (C.J.H., S.L.H., S.T.N.), The University of Queensland, Australia; Department of Neurology (M.R.J.M., R.P.A.E., L.H.B.), UMC Utrecht Brain Centre, University Medical Centre Utrecht, The Netherlands; Department of Neurology (D.F.), Peking University Third Hospital; Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases (D.F.), China; Centre for Clinical Research (P.A.M., R.D.H., F.J.S., S.T.N.), The University of Queensland; Department of Neurology (P.A.M., R.D.H., F.J.S., S.T.N.), Royal Brisbane and Women's Hospital, Australia; Biostatistics and Research Support (R.P.A.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, The Netherlands; and School of Biomedical Sciences (F.J.S.), The University of Queensland, Australia
| | - Shyuan T Ngo
- From the Australian Institute for Bioengineering and Nanotechnology (C.J.H., S.L.H., S.T.N.), The University of Queensland, Australia; Department of Neurology (M.R.J.M., R.P.A.E., L.H.B.), UMC Utrecht Brain Centre, University Medical Centre Utrecht, The Netherlands; Department of Neurology (D.F.), Peking University Third Hospital; Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases (D.F.), China; Centre for Clinical Research (P.A.M., R.D.H., F.J.S., S.T.N.), The University of Queensland; Department of Neurology (P.A.M., R.D.H., F.J.S., S.T.N.), Royal Brisbane and Women's Hospital, Australia; Biostatistics and Research Support (R.P.A.E.), Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, The Netherlands; and School of Biomedical Sciences (F.J.S.), The University of Queensland, Australia
| |
Collapse
|
5
|
Choi SJ, Yoon SH, Sung JJ, Lee JH. Association Between Fat Depletion and Prognosis of Amyotrophic Lateral Sclerosis: CT-Based Body Composition Analysis. Ann Neurol 2023; 94:1116-1125. [PMID: 37612833 DOI: 10.1002/ana.26775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/25/2023]
Abstract
OBJECTIVE The purpose of this study was to present the results of our investigation of the prognostic value of adipopenia and sarcopenia in patients with amyotrophic lateral sclerosis (ALS). METHODS Consecutive patients with ALS with abdominal computed tomography (CT) were retrospectively identified at a single tertiary hospital between January 2010 and July 2021. Deep learning-based volumetric CT body composition analysis software was used to obtain abdominal waist fat volume, fat attenuation, and skeletal muscle area at the L3 level, then normalized to the fat volume index (FVI) and skeletal muscle index (SMI). Adipopenia and sarcopenia were defined as the sex-specific lowest quartile and SMI reference values, respectively. The associations of CT-derived body composition parameters with clinical variables, such as body mass index (BMI) and creatinine, were evaluated by Pearson correlation analyses, and associations with survival were assessed using the multivariable Cox regression analysis. RESULTS Eighty subjects (40 men, 65.5 ± 9.4 years of age) were investigated (median interval between disease onset and CT examination = 25 months). The mean BMI at the CT examination was 20.3 ± 4.3 kg/m2 . The BMI showed a positive correlation with both FVI (R = 0.70, p < 0.001) and SMI (R = 0.63, p < 0.001), and the serum creatinine level was associated with SMI (R = 0.68, p < 0.001). After adjusting for sex, age, King's stage, BMI, creatinine, progression rate, and sarcopenia, adipopenia was associated with shorter survival (hazard ratio [HR] = 5.94, 95% confidence interval [CI] = 1.01, 35.0, p = 0.049). In a subgroup analysis for subjects with nutritional failure (stage 4a), the HR of adipopenia was 15.1 (95% CI = 2.45, 93.4, p = 0.003). INTERPRETATION Deep learning-based CT-derived adipopenia in patients with ALS is an independent poor prognostic factor for survival. ANN NEUROL 2023;94:1116-1125.
Collapse
Affiliation(s)
- Seok-Jin Choi
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
- Center for Hospital Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Soon Ho Yoon
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jung-Joon Sung
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jong Hyuk Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
6
|
Carrera-Juliá S, Estrela JM, Zacarés M, Navarro MÁ, Vega-Bello MJ, de la Rubia Ortí JE, Moreno ML, Drehmer E. Effect of the Mediterranean diet supplemented with nicotinamide riboside and pterostilbene and/or coconut oil on anthropometric variables in amyotrophic lateral sclerosis. A pilot study. Front Nutr 2023; 10:1232184. [PMID: 37810917 PMCID: PMC10556480 DOI: 10.3389/fnut.2023.1232184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a chronic and progressive neurodegenerative disease that causes the death of motor neurons and alters patients' body composition. Supplementation with the antioxidants nicotinamide riboside (NR) and pterostilbene (PTER) can combat associated oxidative stress. Additionally, coconut oil is an alternative energy substrate that can address mitochondrial dysfunction. The aim of the present study is to assess the impact of a Mediterranean Diet supplemented with NR and PTER and/or with coconut oil on the anthropometric variables of patients with ALS. A prospective, mixed, randomized, analytical and experimental pilot study in humans was performed through a clinical trial (registered with ClinicalTrials.gov under number NCT03489200) with pre- and post-intervention assessments. The sample was made up of 40 subjects categorized into four study groups (Control, Antioxidants, Coconut oil, and Antioxidants + Coconut oil). Pre- and post-intervention anthropometric assessments were carried out to determine the following data: weight, percentage of fat and muscle mass, skinfolds, body perimeters, Body Mass Index (BMI), Waste-to-Hip Index (WHI) and Waist-Height Ratio (WHR). Compared to the Control group, GAx significantly increased muscle mass percentage and decreased fat mass percentage, triceps, iliac crest, and abdominal skinfolds. GCoco significantly increased muscle mass percentage and decreased fat mass percentage, subscapular skinfolds, and abdominal skinfolds. GAx + coco significantly increased muscle mass percentage and decreased abdominal skinfolds. Therefore, our results suggest that the Mediterranean Diet supplemented with NR and PTER and the Mediterranean Diet supplemented with coconut oil (ketogenic diet) are the two nutritional interventions that have reported the greatest benefits, at anthropometric level.
Collapse
Affiliation(s)
- Sandra Carrera-Juliá
- Department of Nutrition and Dietetics, Catholic University of Valencia San Vicente Mártir, Valencia, Spain
| | - José M. Estrela
- Department of Physiology, University of Valencia, Valencia, Spain
| | - Mario Zacarés
- Department of Basic and Transversal Sciences, Catholic University of Valencia San Vicente Mártir, Valencia, Spain
| | - Mari Ángeles Navarro
- Department of Basic and Transversal Sciences, Catholic University of Valencia San Vicente Mártir, Valencia, Spain
| | - María Jesús Vega-Bello
- Department of Human Anatomy and Physiology, Catholic University of Valencia San Vicente Mártir, Valencia, Spain
| | | | - Mari Luz Moreno
- Department of Human Anatomy and Physiology, Catholic University of Valencia San Vicente Mártir, Valencia, Spain
| | - Eraci Drehmer
- Department of Health and Functional Assessment, Catholic University of Valencia San Vicente Mártir, Valencia, Spain
| |
Collapse
|
7
|
Chang J, Shaw TB, Holdom CJ, McCombe PA, Henderson RD, Fripp J, Barth M, Guo CC, Ngo ST, Steyn FJ. Lower hypothalamic volume with lower body mass index is associated with shorter survival in patients with amyotrophic lateral sclerosis. Eur J Neurol 2023; 30:57-68. [PMID: 36214080 PMCID: PMC10099625 DOI: 10.1111/ene.15589] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/15/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Weight loss in patients with amyotrophic lateral sclerosis (ALS) is associated with faster disease progression and shorter survival. Decreased hypothalamic volume is proposed to contribute to weight loss due to loss of appetite and/or hypermetabolism. We aimed to investigate the relationship between hypothalamic volume and body mass index (BMI) in ALS and Alzheimer's disease (AD), and the associations of hypothalamic volume with weight loss, appetite, metabolism and survival in patients with ALS. METHODS We compared hypothalamic volumes from magnetic resonance imaging scans with BMI for patients with ALS (n = 42), patients with AD (n = 167) and non-neurodegenerative disease controls (n = 527). Hypothalamic volumes from patients with ALS were correlated with measures of appetite and metabolism, and change in anthropomorphic measures and disease outcomes. RESULTS Lower hypothalamic volume was associated with lower and higher BMI in ALS (quadratic association; probability of direction = 0.96). This was not observed in AD patients or controls. Hypothalamic volume was not associated with loss of appetite (p = 0.58) or hypermetabolism (p = 0.49). Patients with lower BMI and lower hypothalamic volume tended to lose weight (p = 0.08) and fat mass (p = 0.06) over the course of their disease, and presented with an increased risk of earlier death (hazard ratio [HR] 3.16, p = 0.03). Lower hypothalamic volume alone trended for greater risk of earlier death (HR 2.61, p = 0.07). CONCLUSION These observations suggest that lower hypothalamic volume in ALS contributes to positive and negative energy balance, and is not universally associated with loss of appetite or hypermetabolism. Critically, lower hypothalamic volume with lower BMI was associated with weight loss and earlier death.
Collapse
Affiliation(s)
- Jeryn Chang
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Saint Lucia, Australia
| | - Thomas B Shaw
- Department of Neurology, Royal Brisbane and Women's Hospital, Herston, Australia.,Centre for Advanced Imaging, The University of Queensland, Saint Lucia, Australia.,School of Information Technology and Electrical Engineering, The University of Queensland, Saint Lucia, Australia
| | - Cory J Holdom
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Saint Lucia, Australia
| | - Pamela A McCombe
- Department of Neurology, Royal Brisbane and Women's Hospital, Herston, Australia.,UQ Centre for Clinical Research, The University of Queensland, Herston, Australia.,Wesley Medical Research, The Wesley Hospital, Auchenflower, Australia
| | - Robert D Henderson
- Department of Neurology, Royal Brisbane and Women's Hospital, Herston, Australia.,UQ Centre for Clinical Research, The University of Queensland, Herston, Australia.,Wesley Medical Research, The Wesley Hospital, Auchenflower, Australia
| | - Jurgen Fripp
- CSIRO Health and Biosecurity, Herston, Australia
| | - Markus Barth
- Centre for Advanced Imaging, The University of Queensland, Saint Lucia, Australia.,School of Information Technology and Electrical Engineering, The University of Queensland, Saint Lucia, Australia
| | | | - Shyuan T Ngo
- Department of Neurology, Royal Brisbane and Women's Hospital, Herston, Australia.,Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Saint Lucia, Australia.,Wesley Medical Research, The Wesley Hospital, Auchenflower, Australia
| | - Frederik J Steyn
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Saint Lucia, Australia.,Department of Neurology, Royal Brisbane and Women's Hospital, Herston, Australia.,Wesley Medical Research, The Wesley Hospital, Auchenflower, Australia
| | | |
Collapse
|
8
|
Godoy-Corchuelo JM, Fernández-Beltrán LC, Ali Z, Gil-Moreno MJ, López-Carbonero JI, Guerrero-Sola A, Larrad-Sainz A, Matias-Guiu J, Matias-Guiu JA, Cunningham TJ, Corrochano S. Lipid Metabolic Alterations in the ALS-FTD Spectrum of Disorders. Biomedicines 2022; 10:1105. [PMID: 35625841 PMCID: PMC9138405 DOI: 10.3390/biomedicines10051105] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023] Open
Abstract
There is an increasing interest in the study of the relation between alterations in systemic lipid metabolism and neurodegenerative disorders, in particular in Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD). In ALS these alterations are well described and evident not only with the progression of the disease but also years before diagnosis. Still, there are some discrepancies in findings relating to the causal nature of lipid metabolic alterations, partly due to the great clinical heterogeneity in ALS. ALS presentation is within a disorder spectrum with Frontotemporal Dementia (FTD), and many patients present mixed forms of ALS and FTD, thus increasing the variability. Lipid metabolic and other systemic metabolic alterations have not been well studied in FTD, or in ALS-FTD mixed forms, as has been in pure ALS. With the recent development in lipidomics and the integration with other -omics platforms, there is now emerging data that not only facilitates the identification of biomarkers but also enables understanding of the underlying pathological mechanisms. Here, we reviewed the recent literature to compile lipid metabolic alterations in ALS, FTD, and intermediate mixed forms, with a view to appraising key commonalities or differences within the spectrum.
Collapse
Affiliation(s)
- Juan Miguel Godoy-Corchuelo
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Luis C. Fernández-Beltrán
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Zeinab Ali
- MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK; (Z.A.); (T.J.C.)
| | - María J. Gil-Moreno
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Juan I. López-Carbonero
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Antonio Guerrero-Sola
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Angélica Larrad-Sainz
- Nutrition and Endocrinology Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain;
| | - Jorge Matias-Guiu
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Jordi A. Matias-Guiu
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| | - Thomas J. Cunningham
- MRC Harwell Institute, Harwell Campus, Oxfordshire OX11 0RD, UK; (Z.A.); (T.J.C.)
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Silvia Corrochano
- Neurological Disorders Group, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain; (J.M.G.-C.); (L.C.F.-B.); (M.J.G.-M.); (J.I.L.-C.); (A.G.-S.); (J.M.-G.); (J.A.M.-G.)
| |
Collapse
|
9
|
Tandan R, Levy EA, Howard DB, Hiser J, Kokinda N, Dey S, Kasarskis EJ. Body composition in amyotrophic lateral sclerosis subjects and its effect on disease progression and survival. Am J Clin Nutr 2022; 115:1378-1392. [PMID: 35108352 PMCID: PMC9071423 DOI: 10.1093/ajcn/nqac016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Motor neuron degeneration and malnutrition alter body composition in amyotrophic lateral sclerosis (ALS). Resulting losses of weight, fat mass (FM), and fat-free mass (FFM) shorten survival. Nutritional management relies on body weight or BMI; neither reliably indicates malnutrition nor differentiates body compartments. OBJECTIVES We aimed to 1) develop an equation to compute FM and FFM using clinical data, validated against DXA; and 2) examine the effect of computed FM and FFM on disease course and survival. METHODS We studied 364 ALS patients from 3 cohorts. In Cohort #1 we used logistic regression on clinical and demographic data to create an equation (test cohort). In Cohort #2 we validated FM and FFM computed using this equation against DXA (validation cohort). In Cohort #3, we examined the effect of computed body composition on disease course and survival. RESULTS In Cohort #1 (n = 29) the model incorporated sex, age, BMI, and bulbar-onset to create an equation to estimate body fat: % body fat = 1.73 - [19.80*gender (1 if male or 0 if female)] + [0.25*weight (kg)] + [0.95*BMI (kg/m2)] - (5.20*1 if bulbar-onset or *0 if limb-onset). In Cohort #2 (n = 104), body composition using this equation, compared to other published equations, showed the least variance from DXA values. In Cohort #3 (n = 314), loss of body composition over 6 mo was greater in males. Adjusted survival was predicted by low baseline FM (HR: 1.39; 95% CI: 1.07, 1.80), and loss of FM (HR: 1.87; 95% CI: 1.30, 2.69) and FFM (HR: 1.73; 95% CI: 1.20, 2.49) over 6 mo. CONCLUSIONS Our equation broadens the traditional nutritional evaluation in clinics and reliably estimates body composition. Measuring body composition could target FM as a focus for nutritional management to ensure adequate energy intake and complement measures, such as the ALS functional rating scale-revised score and forced vital capacity, currently used.
Collapse
Affiliation(s)
- Rup Tandan
- Department of Neurological Sciences, University of Vermont Medical Center and Robert Larner, MD College of Medicine, University of Vermont, Burlington, VT, USA
- General Clinical Research Center, University of Vermont Medical Center and Robert Larner, MD College of Medicine, University of Vermont, Burlington, VT, USA
| | - Evan A Levy
- Department of Neurological Sciences, University of Vermont Medical Center and Robert Larner, MD College of Medicine, University of Vermont, Burlington, VT, USA
- General Clinical Research Center, University of Vermont Medical Center and Robert Larner, MD College of Medicine, University of Vermont, Burlington, VT, USA
| | - Diantha B Howard
- General Clinical Research Center, University of Vermont Medical Center and Robert Larner, MD College of Medicine, University of Vermont, Burlington, VT, USA
- The Northern New England Clinical and Translational Research Network, Robert Larner, MD College of Medicine, University of Vermont, Burlington, VT, USA
- Maine Medical Center Research Institute, Portland, ME, USA
| | - John Hiser
- General Clinical Research Center, University of Vermont Medical Center and Robert Larner, MD College of Medicine, University of Vermont, Burlington, VT, USA
- The Northern New England Clinical and Translational Research Network, Robert Larner, MD College of Medicine, University of Vermont, Burlington, VT, USA
- Maine Medical Center Research Institute, Portland, ME, USA
| | - Nathan Kokinda
- General Clinical Research Center, University of Vermont Medical Center and Robert Larner, MD College of Medicine, University of Vermont, Burlington, VT, USA
- The Northern New England Clinical and Translational Research Network, Robert Larner, MD College of Medicine, University of Vermont, Burlington, VT, USA
- Maine Medical Center Research Institute, Portland, ME, USA
| | - Swatee Dey
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- General Clinical Research Center, University of Kentucky, Lexington, KY, USA
| | - Edward J Kasarskis
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- General Clinical Research Center, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
10
|
Lee I, Kazamel M, McPherson T, McAdam J, Bamman M, Amara A, Smith DL, King PH. Fat mass loss correlates with faster disease progression in amyotrophic lateral sclerosis patients: Exploring the utility of dual-energy x-ray absorptiometry in a prospective study. PLoS One 2021; 16:e0251087. [PMID: 33956876 PMCID: PMC8101939 DOI: 10.1371/journal.pone.0251087] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 04/19/2021] [Indexed: 11/19/2022] Open
Abstract
Background/objective Weight loss is a predictor of shorter survival in amyotrophic lateral sclerosis (ALS). We performed serial measures of body composition using Dual-energy X-ray Absorptiometry (DEXA) in ALS patients to explore its utility as a biomarker of disease progression. Methods DEXA data were obtained from participants with ALS (enrollment, at 6- and 12- months follow ups) and Parkinson’s disease (enrollment and at 4-month follow up) as a comparator group. Body mass index, total lean mass index, appendicular lean mass index, total fat mass index, and percentage body fat at enrollment were compared between the ALS and PD cohorts and age-matched normative data obtained from the National Health and Nutrition Examination Survey database. Estimated monthly changes of body composition measures in the ALS cohort were compared to those of the PD cohort and were correlated with disease progression measured by the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R). Results The ALS cohort (N = 20) had lower baseline total and appendicular lean mass indices compared to the PD cohort (N = 20) and general population. Loss in total and appendicular lean masses were found to be significantly associated with follow-up time. Low baseline percentage body fat (r = 0.72, p = 0.04), loss of percentage body fat (r = 0.81, p = 0.01), and total fat mass index (r = 0.73, p = 0.04) during follow up correlated significantly with monthly decline of ALSFRS-R scores in ALS cohort who had 2 or more follow-ups (N = 8). Conclusion Measurement of body composition with DEXA might serve as a biomarker for rapid disease progression in ALS.
Collapse
Affiliation(s)
- Ikjae Lee
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail: (IL); (PHK)
| | - Mohamed Kazamel
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Tarrant McPherson
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jeremy McAdam
- Department of Cell, Developmental, & Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Marcas Bamman
- Department of Cell, Developmental, & Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, United States of America
| | - Amy Amara
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Daniel L. Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Peter H. King
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Cell, Developmental, & Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, United States of America
- * E-mail: (IL); (PHK)
| |
Collapse
|
11
|
Ahmed RM, Steyn F, Dupuis L. Hypothalamus and weight loss in amyotrophic lateral sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:327-338. [PMID: 34225938 DOI: 10.1016/b978-0-12-820107-7.00020-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating progressive neurodegenerative disorder. While initially pathophysiology was thought to be restricted to motor deficits, it is increasingly recognized that patients develop prominent changes in weight and eating behavior that result from and mediate the underlying neurodegenerative process. These changes include alterations in metabolism, lipid levels, and insulin resistance. Emerging research suggests that these alterations may be mediated through changes in the hypothalamic function, with atrophy of the hypothalamus shown in both ALS patients and also presymptomatic genetic at-risk patients. This chapter reviews the evidence for hypothalamic involvement in ALS, including melanocortin pathways and potential treatment targets.
Collapse
Affiliation(s)
- Rebekah M Ahmed
- Memory and Cognition Clinic, Department of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Central Sydney Medical School and Brain & Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Frederik Steyn
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia; Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, QLD, Australia
| | - Luc Dupuis
- Université de Strasbourg, Inserm, UMR-S 1118, Centre de Recherches en Biomédecine, Strasbourg, France.
| |
Collapse
|
12
|
Iacoangeli A, Lin T, Al Khleifat A, Jones AR, Opie-Martin S, Coleman JRI, Shatunov A, Sproviero W, Williams KL, Garton F, Restuadi R, Henders AK, Mather KA, Needham M, Mathers S, Nicholson GA, Rowe DB, Henderson R, McCombe PA, Pamphlett R, Blair IP, Schultz D, Sachdev PS, Newhouse SJ, Proitsi P, Fogh I, Ngo ST, Dobson RJB, Wray NR, Steyn FJ, Al-Chalabi A. Genome-wide Meta-analysis Finds the ACSL5-ZDHHC6 Locus Is Associated with ALS and Links Weight Loss to the Disease Genetics. Cell Rep 2020; 33:108323. [PMID: 33113361 PMCID: PMC7610013 DOI: 10.1016/j.celrep.2020.108323] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 07/28/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
We meta-analyze amyotrophic lateral sclerosis (ALS) genome-wide association study (GWAS) data of European and Chinese populations (84,694 individuals). We find an additional significant association between rs58854276 spanning ACSL5-ZDHHC6 with ALS (p = 8.3 × 10-9), with replication in an independent Australian cohort (1,502 individuals; p = 0.037). Moreover, B4GALNT1, G2E3-SCFD1, and TRIP11-ATXN3 are identified using a gene-based analysis. ACSL5 has been associated with rapid weight loss, as has another ALS-associated gene, GPX3. Weight loss is frequent in ALS patients and is associated with shorter survival. We investigate the effect of the ACSL5 and GPX3 single-nucleotide polymorphisms (SNPs), using longitudinal body composition and weight data of 77 patients and 77 controls. In patients' fat-free mass, although not significant, we observe an effect in the expected direction (rs58854276: -2.1 ± 1.3 kg/A allele, p = 0.053; rs3828599: -1.0 ± 1.3 kg/A allele, p = 0.22). No effect was observed in controls. Our findings support the increasing interest in lipid metabolism in ALS and link the disease genetics to weight loss in patients.
Collapse
Affiliation(s)
- Alfredo Iacoangeli
- Department of Biostatistics and Health Informatics, King's College London, London, UK; Maurice Wohl Clinical Neuroscience Institute, King's College London, Department of Basic and Clinical Neuroscience, London, UK; National Institute for Health Research Biomedical Research Centre and Dementia Unit at South London and Maudsley NHS Foundation Trust and King's College London, London, UK.
| | - Tian Lin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Brisbane QLD 4072, Australia
| | - Ahmad Al Khleifat
- Maurice Wohl Clinical Neuroscience Institute, King's College London, Department of Basic and Clinical Neuroscience, London, UK
| | - Ashley R Jones
- Maurice Wohl Clinical Neuroscience Institute, King's College London, Department of Basic and Clinical Neuroscience, London, UK
| | - Sarah Opie-Martin
- Maurice Wohl Clinical Neuroscience Institute, King's College London, Department of Basic and Clinical Neuroscience, London, UK
| | - Jonathan R I Coleman
- National Institute for Health Research Biomedical Research Centre and Dementia Unit at South London and Maudsley NHS Foundation Trust and King's College London, London, UK; Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Aleksey Shatunov
- Maurice Wohl Clinical Neuroscience Institute, King's College London, Department of Basic and Clinical Neuroscience, London, UK
| | - William Sproviero
- Maurice Wohl Clinical Neuroscience Institute, King's College London, Department of Basic and Clinical Neuroscience, London, UK
| | - Kelly L Williams
- Centre for Motor Neuron Disease Research, Macquarie University, Sidney NSW 2109, Australia
| | - Fleur Garton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Brisbane QLD 4072, Australia
| | - Restuadi Restuadi
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Brisbane QLD 4072, Australia
| | - Anjali K Henders
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Brisbane QLD 4072, Australia
| | - Karen A Mather
- Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Medicine, University of New South Wales, Sydney NSW, Australia; Neuroscience Research Australia, Randwick NSW, Australia
| | - Merilee Needham
- Fiona Stanley Hospital, 11 Robin Warren Drive, Murdoch Perth WA 6150, Australia; Notre Dame University, 32 Mouat Street, Fremantle WA 6160, Australia; Murdoch University, 90 South Street, Murdoch WA 6150, Australia
| | - Susan Mathers
- Calvary Health Care Bethlehem, Parkdale VIC 3195, Australia
| | - Garth A Nicholson
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney NSW 2139, Australia
| | - Dominic B Rowe
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Robert Henderson
- Centre for Clinical Research, The University of Queensland, Brisbane QLD, Australia; Queensland Brain Institute, The University of Queensland, Brisbane QLD, Australia
| | - Pamela A McCombe
- Centre for Clinical Research, The University of Queensland, Brisbane QLD, Australia; Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane QLD, Australia
| | - Roger Pamphlett
- Brain and Mind Centre, The University of Sydney, Sydney NSW, Australia
| | - Ian P Blair
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - David Schultz
- Flinders Medical Centre, Bedford Park SA 5042, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Medicine, University of New South Wales, Sydney NSW, Australia; Neuropsychiatric Institute, Prince of Wales Hospital, Sydney NSW Australia
| | - Stephen J Newhouse
- Department of Biostatistics and Health Informatics, King's College London, London, UK; National Institute for Health Research Biomedical Research Centre and Dementia Unit at South London and Maudsley NHS Foundation Trust and King's College London, London, UK; Institute of Health Informatics, University College London, London, UK
| | - Petroula Proitsi
- Maurice Wohl Clinical Neuroscience Institute, King's College London, Department of Basic and Clinical Neuroscience, London, UK
| | - Isabella Fogh
- Maurice Wohl Clinical Neuroscience Institute, King's College London, Department of Basic and Clinical Neuroscience, London, UK; Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Shyuan T Ngo
- Centre for Clinical Research, The University of Queensland, Brisbane QLD, Australia; Queensland Brain Institute, The University of Queensland, Brisbane QLD, Australia; Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane QLD, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane QLD, Australia
| | - Richard J B Dobson
- Department of Biostatistics and Health Informatics, King's College London, London, UK; National Institute for Health Research Biomedical Research Centre and Dementia Unit at South London and Maudsley NHS Foundation Trust and King's College London, London, UK; Institute of Health Informatics, University College London, London, UK
| | - Naomi R Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Brisbane QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane QLD, Australia
| | - Frederik J Steyn
- Centre for Clinical Research, The University of Queensland, Brisbane QLD, Australia; Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane QLD, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane QLD, Australia
| | - Ammar Al-Chalabi
- Maurice Wohl Clinical Neuroscience Institute, King's College London, Department of Basic and Clinical Neuroscience, London, UK; King's College Hospital, Bessemer Road, London SE5 9RS, UK
| |
Collapse
|
13
|
Steyn FJ, Li R, Kirk SE, Tefera TW, Xie TY, Tracey TJ, Kelk D, Wimberger E, Garton FC, Roberts L, Chapman SE, Coombes JS, Leevy WM, Ferri A, Valle C, René F, Loeffler JP, McCombe PA, Henderson RD, Ngo ST. Altered skeletal muscle glucose-fatty acid flux in amyotrophic lateral sclerosis. Brain Commun 2020; 2:fcaa154. [PMID: 33241210 PMCID: PMC7677608 DOI: 10.1093/braincomms/fcaa154] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/20/2020] [Accepted: 08/14/2020] [Indexed: 12/27/2022] Open
Abstract
Amyotrophic lateral sclerosis is characterized by the degeneration of upper and lower motor neurons, yet an increasing number of studies in both mouse models and patients with amyotrophic lateral sclerosis suggest that altered metabolic homeostasis is also a feature of disease. Pre-clinical and clinical studies have shown that modulation of energy balance can be beneficial in amyotrophic lateral sclerosis. However, the capacity to target specific metabolic pathways or mechanisms requires detailed understanding of metabolic dysregulation in amyotrophic lateral sclerosis. Here, using the superoxide dismutase 1, glycine to alanine substitution at amino acid 93 (SOD1G93A) mouse model of amyotrophic lateral sclerosis, we demonstrate that an increase in whole-body metabolism occurs at a time when glycolytic muscle exhibits an increased dependence on fatty acid oxidation. Using myotubes derived from muscle of amyotrophic lateral sclerosis patients, we also show that increased dependence on fatty acid oxidation is associated with increased whole-body energy expenditure. In the present study, increased fatty acid oxidation was associated with slower disease progression. However, within the patient cohort, there was considerable heterogeneity in whole-body metabolism and fuel oxidation profiles. Thus, future studies that decipher specific metabolic changes at an individual patient level are essential for the development of treatments that aim to target metabolic pathways in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Frederik J Steyn
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane 4072, Australia.,Centre for Clinical Research, The University of Queensland, Herston, Brisbane 4029, Australia.,Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane 4029, Australia.,Wesley Medical Research, Level 8 East Wing, The Wesley Hospital, Auchenflower 4066, Australia
| | - Rui Li
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane 4072, Australia.,The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Siobhan E Kirk
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Tesfaye W Tefera
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Teresa Y Xie
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Timothy J Tracey
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Dean Kelk
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Elyse Wimberger
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Fleur C Garton
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Llion Roberts
- School of Human Movements and Nutrition Sciences, The University of Queensland, St Lucia, Brisbane 4072, Australia.,School of Allied Health Sciences, Griffith University, Southport, Gold Coast 4222, Australia
| | - Sarah E Chapman
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jeff S Coombes
- School of Human Movements and Nutrition Sciences, The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - W Matthew Leevy
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Alberto Ferri
- IRCCS Fondazione Santa Lucia, Rome, Italy.,National Research Council, Institute of Translational Pharmacology (IFT), Rome, Italy
| | - Cristiana Valle
- IRCCS Fondazione Santa Lucia, Rome, Italy.,National Research Council, Institute of Translational Pharmacology (IFT), Rome, Italy
| | - Frédérique René
- INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France.,Université de Strasbourg, UMRS1118, Strasbourg, France
| | - Jean-Philippe Loeffler
- INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France.,Université de Strasbourg, UMRS1118, Strasbourg, France
| | - Pamela A McCombe
- Centre for Clinical Research, The University of Queensland, Herston, Brisbane 4029, Australia.,Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane 4029, Australia.,Wesley Medical Research, Level 8 East Wing, The Wesley Hospital, Auchenflower 4066, Australia
| | - Robert D Henderson
- Centre for Clinical Research, The University of Queensland, Herston, Brisbane 4029, Australia.,Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane 4029, Australia.,Wesley Medical Research, Level 8 East Wing, The Wesley Hospital, Auchenflower 4066, Australia
| | - Shyuan T Ngo
- Centre for Clinical Research, The University of Queensland, Herston, Brisbane 4029, Australia.,Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane 4029, Australia.,Wesley Medical Research, Level 8 East Wing, The Wesley Hospital, Auchenflower 4066, Australia.,The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane 4072, Australia.,Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane 4072, Australia
| |
Collapse
|
14
|
Janse van Mantgem MR, van Eijk RPA, van der Burgh HK, Tan HHG, Westeneng HJ, van Es MA, Veldink JH, van den Berg LH. Prognostic value of weight loss in patients with amyotrophic lateral sclerosis: a population-based study. J Neurol Neurosurg Psychiatry 2020; 91:867-875. [PMID: 32576612 DOI: 10.1136/jnnp-2020-322909] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/24/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To determine the prevalence and prognostic value of weight loss (WL) prior to diagnosis in patients with amyotrophic lateral sclerosis (ALS). METHODS We enrolled patients diagnosed with ALS between 2010 and 2018 in a population-based setting. At diagnosis, detailed information was obtained regarding the patient's disease characteristics, anthropological changes, ALS-related genotypes and cognitive functioning. Complete survival data were obtained. Cox proportional hazard models were used to assess the association between WL and the risk of death during follow-up. RESULTS The data set comprised 2420 patients of whom 67.5% reported WL at diagnosis. WL occurred in 71.8% of the bulbar-onset and in 64.2% of the spinal-onset patients; the mean loss of body weight was 6.9% (95% CI 6.8 to 6.9) and 5.5% (95% CI 5.5 to 5.6), respectively (p<0.001). WL occurred in 35.1% of the patients without any symptom of dysphagia. WL is a strong independent predictor of survival, with a dose response relationship between the amount of WL and the risk of death: the risk of death during follow-up increased by 23% for every 10% increase in WL relative to body weight (HR 1.23, 95% CI 1.13 to 1.51, p<0.001). CONCLUSIONS This population-based study shows that two-thirds of the patients with ALS have WL at diagnosis, which also occurs independent of dysphagia, and is related to survival. Our results suggest that WL is a multifactorial process that may differ from patient to patient. Gaining further insight in its underlying factors could prove essential for future therapeutic measures.
Collapse
Affiliation(s)
| | - Ruben P A van Eijk
- Neurology, University Medical Centre Utrecht Brain Centre, Utrecht, The Netherlands.,Biostatistics and Research Support, Julius Center for Health Sciences and Primary Care, Utrecht, The Netherlands
| | | | - Harold H G Tan
- Neurology, University Medical Centre Utrecht Brain Centre, Utrecht, The Netherlands
| | - Henk-Jan Westeneng
- Neurology, University Medical Centre Utrecht Brain Centre, Utrecht, The Netherlands
| | - Michael A van Es
- Neurology, University Medical Centre Utrecht Brain Centre, Utrecht, The Netherlands
| | - Jan H Veldink
- Neurology, University Medical Centre Utrecht Brain Centre, Utrecht, The Netherlands
| | | |
Collapse
|
15
|
Zhang L, Tang L, Huang T, Fan D. Life Course Adiposity and Amyotrophic Lateral Sclerosis: A Mendelian Randomization Study. Ann Neurol 2020; 87:434-441. [PMID: 31916305 DOI: 10.1002/ana.25671] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Observational studies have indicated that life course adiposity is associated with amyotrophic lateral sclerosis (ALS). However, whether such an association reflects causality remains unclear. We aimed to determine whether life course adiposity such as birth weight (BW), childhood body mass index (BMI), adult BMI, body fat percentage (BF%), and waist-to-hip ratio (WHR) have causal effects on ALS. METHODS Single nucleotide polymorphisms (SNPs) significantly associated with life course adiposity were used as instrumental variables to estimate the causal effects on ALS. We used summary-level data from a cohort of 20,806 cases and 59,804 controls in a Mendelian randomization (MR) framework. RESULTS Genetically predicted one standard deviation (1-SD) increase in BF% was associated with lower risk of ALS (odds ratio [OR] = 0.67, 95% confidence interval [CI] = 0.54-0.83, p = 3.25E-04) after Bonferroni correction (p < 0.05/5). Genetically predicted 1-SD higher childhood BMI was suggestively associated with lower risk of ALS (OR = 0.88, 95% CI = 0.78-0.99, p = 0.031). The weighted median method indicated a suggestive association between BMI and ALS (OR = 0.86, 95% CI = 0.69-0.96, p = 0.016). Neither a genetically predicted 1-SD increase in BW (inverse variance weighted [IVW]: OR = 1.01, 95% CI = 0.87-1.17, p = 0.939) nor WHR adjusted for BMI (IVW: OR = 0.90, 95% CI = 0.76-1.05, p = 0.178) was associated with ALS. INTERPRETATION Our findings provide novel evidence supporting a causal role of higher adiposity, taken as a whole, on lower risk of ALS. A deeper understanding of the energy metabolism of ALS is more likely to identify feasible nutritional interventions and even novel therapeutic targets that might improve the survival of ALS patients. Ann Neurol 2020;87:434-441.
Collapse
Affiliation(s)
- Linjing Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Lu Tang
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
16
|
Ngo ST, van Eijk RPA, Chachay V, van den Berg LH, McCombe PA, Henderson RD, Steyn FJ. Loss of appetite is associated with a loss of weight and fat mass in patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:497-505. [PMID: 31144522 DOI: 10.1080/21678421.2019.1621346] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: Weight loss in amyotrophic lateral sclerosis (ALS) is associated with faster disease progression and shorter survival. It has different possible causes, including loss of appetite. Our objective is to determine the prevalence and impact of loss of appetite on change in body weight and composition in patients with ALS. Methods: We conducted a prospective case-control study, comparing demographic, clinical, appetite and prognostic features between 62 patients with ALS and 45 healthy non-neurodegenerative disease (NND) controls. To determine the impact of loss of appetite on weight throughout disease course, we conducted serial assessments at ∼three to four-month intervals. Results: Loss of appetite is more prevalent in patients with ALS than NND controls (29 vs. 11.1%, odds ratio = 3.27 (1.1-9.6); p < 0.01). In patients with ALS, loss of appetite is associated with greater weight loss and greater loss of fat mass. Appetite scores in patients with ALS worsens as disease progresses and are correlated with worsening ALS Functional Rating Scale-Revised scores. Conclusion: We confirm that loss of appetite is prevalent in patients with ALS and is significantly associated with weight loss and loss of fat mass. Appetite worsens with disease progression. Identification and early interventions to address loss of appetite in patients with ALS may prevent or slow weight loss; this could improve disease outcome.
Collapse
Affiliation(s)
- Shyuan T Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , Brisbane , Australia.,Queensland Brain Institute, The University of Queensland , Brisbane , Australia.,Centre for Clinical Research, The University of Queensland , Brisbane , Australia.,Department of Neurology, Royal Brisbane and Women's Hospital , Brisbane , Australia.,Wesley Medical Research, The Wesley Hospital , Brisbane , Australia
| | - Ruben P A van Eijk
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht , Utrecht , The Netherlands.,Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht , Utrecht , The Netherlands , and
| | - V Chachay
- School of Human Movement and Nutrition Sciences, The University of Queensland , Brisbane , Australia
| | - Leonard H van den Berg
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht , Utrecht , The Netherlands
| | - Pamela A McCombe
- Centre for Clinical Research, The University of Queensland , Brisbane , Australia.,Department of Neurology, Royal Brisbane and Women's Hospital , Brisbane , Australia.,Wesley Medical Research, The Wesley Hospital , Brisbane , Australia
| | - Robert D Henderson
- Queensland Brain Institute, The University of Queensland , Brisbane , Australia.,Centre for Clinical Research, The University of Queensland , Brisbane , Australia.,Department of Neurology, Royal Brisbane and Women's Hospital , Brisbane , Australia.,Wesley Medical Research, The Wesley Hospital , Brisbane , Australia
| | - Frederik J Steyn
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , Brisbane , Australia.,Centre for Clinical Research, The University of Queensland , Brisbane , Australia.,Department of Neurology, Royal Brisbane and Women's Hospital , Brisbane , Australia.,Wesley Medical Research, The Wesley Hospital , Brisbane , Australia
| |
Collapse
|
17
|
Chipika RH, Finegan E, Li Hi Shing S, Hardiman O, Bede P. Tracking a Fast-Moving Disease: Longitudinal Markers, Monitoring, and Clinical Trial Endpoints in ALS. Front Neurol 2019; 10:229. [PMID: 30941088 PMCID: PMC6433752 DOI: 10.3389/fneur.2019.00229] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 02/22/2019] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) encompasses a heterogeneous group of phenotypes with different progression rates, varying degree of extra-motor involvement and divergent progression patterns. The natural history of ALS is increasingly evaluated by large, multi-time point longitudinal studies, many of which now incorporate presymptomatic and post-mortem assessments. These studies not only have the potential to characterize patterns of anatomical propagation, molecular mechanisms of disease spread, but also to identify pragmatic monitoring markers. Sensitive markers of progressive neurodegenerative change are indispensable for clinical trials and individualized patient care. Biofluid markers, neuroimaging indices, electrophysiological markers, rating scales, questionnaires, and other disease-specific instruments have divergent sensitivity profiles. The discussion of candidate monitoring markers in ALS has a dual academic and clinical relevance, and is particularly timely given the increasing number of pharmacological trials. The objective of this paper is to provide a comprehensive and critical review of longitudinal studies in ALS, focusing on the sensitivity profile of established and emerging monitoring markers.
Collapse
Affiliation(s)
| | - Eoin Finegan
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Stacey Li Hi Shing
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Orla Hardiman
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
18
|
Kirk SE, Tracey TJ, Steyn FJ, Ngo ST. Biomarkers of Metabolism in Amyotrophic Lateral Sclerosis. Front Neurol 2019; 10:191. [PMID: 30936848 PMCID: PMC6431787 DOI: 10.3389/fneur.2019.00191] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/14/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the deterioration of motor neurons. However, this complex disease extends beyond the boundaries of the central nervous system, with metabolic alterations being observed at the systemic and cellular level. While the number of studies that assess the role and impact of metabolic perturbations in ALS is rapidly increasing, the use of metabolism biomarkers in ALS remains largely underinvestigated. In this review, we discuss current and potential metabolism biomarkers in the context of ALS. Of those for which data does exist, there is limited insight provided by individual markers, with specificity for disease, and lack of reproducibility and efficacy in informing prognosis being the largest drawbacks. However, given the array of metabolic markers available, the potential exists for a panel of metabolism biomarkers, which may complement other current biomarkers (including neurophysiology, imaging, as well as CSF, blood and urine markers) to overturn these limitations and give rise to new diagnostic and prognostic indicators.
Collapse
Affiliation(s)
- Siobhan E Kirk
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Timothy J Tracey
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Frederik J Steyn
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Shyuan T Ngo
- The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
19
|
Cerqueira MS, dos Santos CA, Silva DAS, Amorim PRDS, Marins JCB, Franceschini SDCC. Validity of the Body Adiposity Index in Predicting Body Fat in Adults: A Systematic Review. Adv Nutr 2018; 9:617-624. [PMID: 30239583 PMCID: PMC6140443 DOI: 10.1093/advances/nmy043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022] Open
Abstract
The Body Adiposity Index (BAI) is a practical anthropometric method used to measure body fat (BF) percentage (BF%). Recently developed, the validity and precision of BAI has been studied with adult samples of men and women, populations from different countries and ethnicities, varying amounts of BF, and sensitivity to detecting change over time. However, it is still necessary to determine its potential use in clinical practice and epidemiologic studies. Thus, our objective was to verify, through a systematic review, the validity of the BAI in predicting BF% in adults. Two independent researchers performed a search using PubMed, Web of Science, Science Direct, and Scopus databases. In order to be included, the studies had to use dual-energy X-ray absorptiometry (DXA) as a reference method. We excluded studies with samples from individuals with diseases or syndromes that alter the regional distribution of BF%. We included 19 studies with samples on individuals from different continents, varied ethnicities, both sexes, and a wide age range (18-83 y). The concordance of the BAI with DXA assessed by Lin's concordance correlation coefficient showed results classified as poor (pc < 0.90). Bland-Altman plots showed that the BAI produced large individual errors when predicting BF% in all studies using this analysis. The studies were consistent in affirming that the BAI showed limited capacity to estimate BF% in adults. The BAI shows wide individual errors, in agreement with the reference method, and a lack of sensitivity in detecting change in BF% over time. The method presents a systematic error of BF% overestimation in individuals with ≤20% of BF, and underestimation in individuals with >30% of BF, regardless of sex, age, and ethnicity. The results of this systematic review show enough evidence that the BAI does not present satisfying results, and its use is not recommended for BF% determination in adults.
Collapse
Affiliation(s)
- Matheus Santos Cerqueira
- Academic Department of Education, Federal Institute for Education, Sciences, and Technology Southeast of Minas Gerais, Rio Pomba, Minas Gerais, Brazil,Departments of Physical Education, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil,Address correspondence to MSC (e-mail: )
| | | | - Diego Augusto Santos Silva
- Department of Physical Education, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | | | | |
Collapse
|