1
|
Ru Q, Li Y, Zhang X, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in muscle diseases and disorders: mechanisms and therapeutic prospects. Bone Res 2025; 13:27. [PMID: 40000618 PMCID: PMC11861620 DOI: 10.1038/s41413-024-00398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/23/2024] [Accepted: 12/16/2024] [Indexed: 02/27/2025] Open
Abstract
The muscular system plays a critical role in the human body by governing skeletal movement, cardiovascular function, and the activities of digestive organs. Additionally, muscle tissues serve an endocrine function by secreting myogenic cytokines, thereby regulating metabolism throughout the entire body. Maintaining muscle function requires iron homeostasis. Recent studies suggest that disruptions in iron metabolism and ferroptosis, a form of iron-dependent cell death, are essential contributors to the progression of a wide range of muscle diseases and disorders, including sarcopenia, cardiomyopathy, and amyotrophic lateral sclerosis. Thus, a comprehensive overview of the mechanisms regulating iron metabolism and ferroptosis in these conditions is crucial for identifying potential therapeutic targets and developing new strategies for disease treatment and/or prevention. This review aims to summarize recent advances in understanding the molecular mechanisms underlying ferroptosis in the context of muscle injury, as well as associated muscle diseases and disorders. Moreover, we discuss potential targets within the ferroptosis pathway and possible strategies for managing muscle disorders. Finally, we shed new light on current limitations and future prospects for therapeutic interventions targeting ferroptosis.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Zhang
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
van Eijk RPA, van Loon FT, van Unnik JWJ, Weemering DN, Seitidis G, Mavridis D, van den Berg LH, Nikolakopoulos S. Attrition and discontinuation in amyotrophic lateral sclerosis clinical trials: a meta-analysis. J Neurol 2024; 272:40. [PMID: 39666202 DOI: 10.1007/s00415-024-12813-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 12/13/2024]
Abstract
OBJECTIVES Attrition due to adverse events and disease progression impacts the integrity and generalizability of clinical trials. The aim of this study is to provide evidence-based estimates of attrition for clinical trials in amyotrophic lateral sclerosis (ALS), and identify study-related predictors, through a comprehensive systematic review and meta-analysis. METHODS We systematically reviewed the literature to identify all randomized, placebo-controlled clinical trials in ALS and determined the number of patients who discontinued the study per randomized arm. Subsequently, we meta-analyzed attrition rates across studies, evaluated the difference between study arms, and explored the impact of study-level characteristics. Finally, a meta-regression model predicting study discontinuation for future clinical trials was translated into a web application. RESULTS In total, 60 randomized placebo-controlled clinical trials were included in the meta-analysis, randomizing 14,493 patients with ALS. Attrition varied significantly between studies, ranging from 3.1% to 75.7% of all randomized patients, with a pooled effect of 32.0% (90% prediction interval 6.1% to 66.3%). Attrition was similar between the intervention and placebo arm (odds ratio 1.08, 95% CI 0.89 to 1.31, p = 0.43). The follow-up duration was identified as the sole study-level predictor (0.032, 95% CI 0.026 to 0.039, p < 0.001), resulting in predicted attrition of 19.3% for 6-month, 36.4% for 12-month, and 55.6% for 18-month clinical trials. CONCLUSIONS ALS clinical trials encounter high attrition, which increases with the follow-up duration. These findings underscore the need to refine our strategies to manage attrition, preserving the integrity and generalizability of ALS clinical trials.
Collapse
Affiliation(s)
- Ruben P A van Eijk
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
- Biostatistics and Research Support, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Floris T van Loon
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Jordi W J van Unnik
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Daphne N Weemering
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | | | - Dimitris Mavridis
- Department of Primary Education, School of Education, University of Ioannina, Ioannina, Greece
| | - Leonard H van den Berg
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Stavros Nikolakopoulos
- Biostatistics and Research Support, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Psychology, University of Ioannina, Ioannina, Greece
| |
Collapse
|
3
|
Hosseini B, Tremblay CL, Longo C, Glochi S, White JH, Quach C, Ste-Marie LG, Platt RW, Ducharme FM. Oral vitamin D supplemental therapy to attain a desired serum 25-hydroxyvitamin D concentration in essential healthcare teams. Trials 2022; 23:1019. [PMID: 36527143 PMCID: PMC9756469 DOI: 10.1186/s13063-022-06944-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The study objectives were to ascertain the efficacy of vitamin D supplementation in rapidly increasing serum vitamin D and of implementation of a hybrid (virtual and in-person) trial. METHODS In a randomized triple-blind controlled trial, healthcare workers were allocated to receive an oral bolus of 100,000 IU with 10,000 IU/week of vitamin D3 or placebo. The co-primary outcomes were the change from baseline in serum 25-hydroxyvitamin D [(Δ) 25(OH)D] and proportion with vitamin D sufficiency (25(OH)D ≥ 75 nmol/L), at endpoint. Adherence to supplements and procedures as well as adverse event rates were documented. RESULTS Thirty-four (19 intervention, 15 control) subjects were randomized, with 28 (41%) virtual visits. After 44.78 ± 11.00 days from baseline, a significant adjusted group difference of 44.2 (34.7, 53.8) nmol/L was observed in the Δ 25(OH)D (95% CI) in favor of supplementation; 77.8% of intervention, and 13.3% of control, patients were vitamin D sufficient (OR:6.11, 95% CI:1.6, 22.9). The adherence to intervention was 94.7% in the intervention and 100% in the control groups. Irrespective of visit type, high adherence was observed in sampling procedures and completion of fortnightly online questionnaire. No adverse events attributable to vitamin D were reported. CONCLUSION The vitamin D supplementation rapidly and safely raised 25(OH)D levels to sufficient levels for a biological effect. Similarly high adherence to study procedures was observed with virtual and in-person participation. TRIAL REGISTRATION This trial was registered at https://clinicaltrials.gov on July 23, 2020 (# NCT04483635 ).
Collapse
Affiliation(s)
- Banafshe Hosseini
- grid.411418.90000 0001 2173 6322Clinical Research and Knowledge Transfer Unit On Childhood Asthma, Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC Canada
| | - Cécile L. Tremblay
- grid.14848.310000 0001 2292 3357Department of Microbiology, Infectious Disease and Immunology, Centre Hospitalier Universitaire de Montréal, University of Montreal, Quebec, Canada
| | - Cristina Longo
- grid.411418.90000 0001 2173 6322Clinical Research and Knowledge Transfer Unit On Childhood Asthma, Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC Canada ,grid.14848.310000 0001 2292 3357Department of Pharmacy, University of Montreal, Montreal, QC Canada
| | - Shirin Glochi
- grid.14709.3b0000 0004 1936 8649Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC Canada
| | - John H. White
- grid.14709.3b0000 0004 1936 8649Departments of Physiology and Medicine, McGill University, Montreal, QC Canada
| | - Caroline Quach
- grid.411418.90000 0001 2173 6322Department of Microbiology, Infectious Diseases and Immunology, Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Louis-Georges Ste-Marie
- grid.410559.c0000 0001 0743 2111Department of Medicine, Centre Hospitalier Universitaire de Montréal, Montreal, QC Canada
| | - Robert W. Platt
- grid.14709.3b0000 0004 1936 8649Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC Canada
| | - Francine M. Ducharme
- grid.411418.90000 0001 2173 6322Clinical Research and Knowledge Transfer Unit On Childhood Asthma, Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC Canada ,grid.14848.310000 0001 2292 3357Departments of Pediatrics and of Social and Preventive Medicine, University of Montréal, Quebec, Canada
| |
Collapse
|
4
|
Fournier CN. Considerations for Amyotrophic Lateral Sclerosis (ALS) Clinical Trial Design. Neurotherapeutics 2022; 19:1180-1192. [PMID: 35819713 PMCID: PMC9275386 DOI: 10.1007/s13311-022-01271-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 11/20/2022] Open
Abstract
Thoughtful clinical trial design is critical for efficient therapeutic development, particularly in the field of amyotrophic lateral sclerosis (ALS), where trials often aim to detect modest treatment effects among a population with heterogeneous disease progression. Appropriate outcome measure selection is necessary for trials to provide decisive and informative results. Investigators must consider the outcome measure's reliability, responsiveness to detect change when change has actually occurred, clinical relevance, and psychometric performance. ALS clinical trials can also be performed more efficiently by utilizing statistical enrichment techniques. Innovations in ALS prediction models allow for selection of participants with less heterogeneity in disease progression rates without requiring a lead-in period, or participants can be stratified according to predicted progression. Statistical enrichment can reduce the needed sample size and improve study power, but investigators must find a balance between optimizing statistical efficiency and retaining generalizability of study findings to the broader ALS population. Additional progress is still needed for biomarker development and validation to confirm target engagement in ALS treatment trials. Selection of an appropriate biofluid biomarker depends on the treatment mechanism of interest, and biomarker studies should be incorporated into early phase trials. Inclusion of patients with ALS as advisors and advocates can strengthen clinical trial design and study retention, but more engagement efforts are needed to improve diversity and equity in ALS research studies. Another challenge for ALS therapeutic development is identifying ways to respect patient autonomy and improve access to experimental treatment, something that is strongly desired by many patients with ALS and ALS advocacy organizations. Expanded access programs that run concurrently to well-designed and adequately powered randomized controlled trials may provide an opportunity to broaden access to promising therapeutics without compromising scientific integrity or rushing regulatory approval of therapies without adequate proof of efficacy.
Collapse
Affiliation(s)
- Christina N Fournier
- Department of Neurology, Emory University, Atlanta, GA, USA.
- Department of Veterans Affairs, Atlanta, GA, USA.
| |
Collapse
|
5
|
Wong C, Stavrou M, Elliott E, Gregory JM, Leigh N, Pinto AA, Williams TL, Chataway J, Swingler R, Parmar MKB, Stallard N, Weir CJ, Parker RA, Chaouch A, Hamdalla H, Ealing J, Gorrie G, Morrison I, Duncan C, Connelly P, Carod-Artal FJ, Davenport R, Reitboeck PG, Radunovic A, Srinivasan V, Preston J, Mehta AR, Leighton D, Glasmacher S, Beswick E, Williamson J, Stenson A, Weaver C, Newton J, Lyle D, Dakin R, Macleod M, Pal S, Chandran S. Clinical trials in amyotrophic lateral sclerosis: a systematic review and perspective. Brain Commun 2021; 3:fcab242. [PMID: 34901853 PMCID: PMC8659356 DOI: 10.1093/braincomms/fcab242] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Amyotrophic lateral sclerosis is a progressive and devastating neurodegenerative disease. Despite decades of clinical trials, effective disease-modifying drugs remain scarce. To understand the challenges of trial design and delivery, we performed a systematic review of Phase II, Phase II/III and Phase III amyotrophic lateral sclerosis clinical drug trials on trial registries and PubMed between 2008 and 2019. We identified 125 trials, investigating 76 drugs and recruiting more than 15 000 people with amyotrophic lateral sclerosis. About 90% of trials used traditional fixed designs. The limitations in understanding of disease biology, outcome measures, resources and barriers to trial participation in a rapidly progressive, disabling and heterogenous disease hindered timely and definitive evaluation of drugs in two-arm trials. Innovative trial designs, especially adaptive platform trials may offer significant efficiency gains to this end. We propose a flexible and scalable multi-arm, multi-stage trial platform where opportunities to participate in a clinical trial can become the default for people with amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Charis Wong
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Maria Stavrou
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- UK Dementia Research Institute, Chancellor’s Building, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Elizabeth Elliott
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- UK Dementia Research Institute, Chancellor’s Building, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Jenna M Gregory
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- UK Dementia Research Institute, Chancellor’s Building, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Nigel Leigh
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, UK
| | - Ashwin A Pinto
- Neurology Department, Wessex Neurosciences Centre, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Timothy L Williams
- Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, UK
| | - Jeremy Chataway
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London WC1B 5EH, UK
- National Institute for Health Research, University College London Hospitals, Biomedical Research Centre, London, W1T 7DN, UK
- MRC CTU at UCL, Institute of Clinical Trials and Methodology, University College London, London, WC1V 6LJ, UK
| | - Robert Swingler
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Mahesh K B Parmar
- MRC CTU at UCL, Institute of Clinical Trials and Methodology, University College London, London, WC1V 6LJ, UK
| | - Nigel Stallard
- Statistics and Epidemiology, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Christopher J Weir
- Edinburgh Clinical Trials Unit, Usher Institute, Level 2, NINE Edinburgh BioQuarter, 9 Little France Road, Edinburgh EH16 4UX, UK
| | - Richard A Parker
- Edinburgh Clinical Trials Unit, Usher Institute, Level 2, NINE Edinburgh BioQuarter, 9 Little France Road, Edinburgh EH16 4UX, UK
| | - Amina Chaouch
- Motor Neurone Disease Care Centre, Manchester Centre for Clinical Neurosciences, Salford, M6 8HD, UK
| | - Hisham Hamdalla
- Motor Neurone Disease Care Centre, Manchester Centre for Clinical Neurosciences, Salford, M6 8HD, UK
| | - John Ealing
- Motor Neurone Disease Care Centre, Manchester Centre for Clinical Neurosciences, Salford, M6 8HD, UK
| | - George Gorrie
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow, G51 4TF, UK
| | - Ian Morrison
- Department of Neurology, NHS Tayside, Dundee, DD2 1UB, UK
| | - Callum Duncan
- Department of Neurology, Aberdeen Royal Infirmary, Aberdeen, AB25 2ZN, UK
| | - Peter Connelly
- NHS Research Scotland Neuroprogressive Disorders and Dementia Network, Ninewells Hospital, Dundee, DD1 9SY, UK
| | | | - Richard Davenport
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Department of Clinical Neurosciences, NHS Lothian, Edinburgh, EH16 4SA, UK
| | - Pablo Garcia Reitboeck
- Atkinson Morley Regional Neurosciences Centre, St. George's University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | | | | | - Jenny Preston
- Department of Neurology, NHS Ayrshire & Arran, KA12 8SS, UK
| | - Arpan R Mehta
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- UK Dementia Research Institute, Chancellor’s Building, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Danielle Leighton
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Stella Glasmacher
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Emily Beswick
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Jill Williamson
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Amy Stenson
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Christine Weaver
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Judith Newton
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Dawn Lyle
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Rachel Dakin
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Malcolm Macleod
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Suvankar Pal
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, 49 Little France Crescent, The University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, FU303F, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- UK Dementia Research Institute, Chancellor’s Building, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| |
Collapse
|
6
|
Bella ED, Bersano E, Antonini G, Borghero G, Capasso M, Caponnetto C, Chiò A, Corbo M, Filosto M, Giannini F, Spataro R, Lunetta C, Mandrioli J, Messina S, Monsurrò MR, Mora G, Riva N, Rizzi R, Siciliano G, Silani V, Simone I, Sorarù G, Tugnoli V, Verriello L, Volanti P, Furlan R, Nolan JM, Abgueguen E, Tramacere I, Lauria G. The unfolded protein response in amyotrophic later sclerosis: results of a phase 2 trial. Brain 2021; 144:2635-2647. [PMID: 33905493 PMCID: PMC8557337 DOI: 10.1093/brain/awab167] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/26/2021] [Accepted: 04/16/2021] [Indexed: 11/14/2022] Open
Abstract
Strong evidence suggests that endoplasmic reticulum (ER) stress plays a critical role in the pathogenesis of amyotrophic lateral sclerosis (ALS) through an altered regulation of proteostasis. Robust preclinical findings demonstrated that guanabenz selectively inhibits ER stress-induced eIF2α-phosphatase allowing misfolded protein clearance, reduces neuronal death and prolongs survival in in vitro and in vivo models. Its efficacy and safety in ALS patients are unknown. To address these issues, we conducted a multicentre, randomised, double-blind trial, with futility design. ALS patients with onset of symptoms within the previous 18 months were randomly assigned to receive in a 1:1:1:1 ratio guanabenz 64 mg, 32 mg, 16 mg or placebo daily for 6 months as add-on therapy to riluzole. The purpose of the placebo group blinding was safety but not efficacy. The primary outcome was the proportion of patients progressing to higher stages of disease in 6 months as measured by the ALS Milano-Torino staging compared to a historical cohort of 200 ALS patients. The secondary outcomes were the rate of decline in ALSFRS-R total score, slow vital capacity change, time to death, tracheotomy or permanent ventilation and serum light neurofilament level at 6 months. The primary analysis of efficacy was performed by intention-to-treat. Guanabenz 64 mg and 32 mg arms, both alone and combined, reached the primary hypothesis of non-futility with proportions of patients who progressed to higher stage of disease at 6 months significantly lower than that expected under the hypothesis of non-futility and significantly lower difference in the median rate of change of the ALSFRS-R total score. This effect was driven by patients with bulbar onset, none of whom (0/18) progressed to a higher stage of disease at 6 months compared with those in guanabenz 16 mg (4/8; 50%), historical cohort alone (21/49; 43%; p = 0.001) or plus placebo (25/60; 42%; p = 0.001). The proportion of patients who experienced at least one adverse event was higher in any guanabenz arm than in the placebo arm, with higher dosing arms having significantly higher proportion of drug-related side effects and the 64 mg arm significantly higher drop-out rate. The number of serious adverse events did not significantly differ between guanabenz arms and placebo. Our findings indicate that a larger trial with a molecule targeting the UPR pathway without the alpha-2 adrenergic related side-effect profile of guanabenz is warranted.
Collapse
Affiliation(s)
- Eleonora Dalla Bella
- 3rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Enrica Bersano
- 3rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Giovanni Antonini
- NESMOS Department, Neuromuscolar Disease Unit, Sant'Andrea Hospital and University of Rome "Sapienza", Rome, Italy
| | | | | | | | - Adriano Chiò
- ALS Centre "Rita Levi Montalcini", Department of Neuroscience, University of Turin, Turin, Italy.,Azienda Ospedaliero-Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Massimo Corbo
- Department of Neurorehabilitaton, Casa Cura Policlinico, Milan, Italy
| | - Massimiliano Filosto
- Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili Brescia and NeMO-Brescia Clinical Centre for Neuromuscular Diseases, Brescia, Italy
| | - Fabio Giannini
- Department of Medical and Surgery Sciences and Neurosciences, University of Siena, Italy
| | | | | | - Jessica Mandrioli
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Sonia Messina
- Unit of Neurology and Neuromuscular Disorders, Department of Clinical and Experimental Medicine and University of Messina, AOU Policlinico "G. Martino", Messina, Italy.,NEuroMuscular Omnicentre of Messina, University Hospital "G. Martino", Messina, Italy
| | | | | | - Nilo Riva
- Department of Neurology IRCCS "San Raffaele" Hospital, Milan, Italy
| | - Romana Rizzi
- Neurology Unit, Department of Neuro-Motor Diseases, Azienda Unità Sanitaria Locale, IRCCS of Reggio Emilia, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Italy
| | - Vincenzo Silani
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy.,Department of Pathophysiology and Transplantation, "Dino Ferrari" Centre and Centre for Neurotechnology and Brain Therapeutics, University of Milan, Milan, Italy
| | - Isabella Simone
- Department of Neurology and Psychiatry, University of Bari, Italy
| | - Gianni Sorarù
- Department of Neurosciences, University of Padua, Italy
| | - Valeria Tugnoli
- Department of Neuroscience and Rehabilitation, Division of Neurology, University Hospital of Ferrara, Ferrara, Italy
| | - Lorenzo Verriello
- Neurology Unit, S. Maria della Misericordia University Hospital, Udine, Italy
| | - Paolo Volanti
- Intensive Neurorehabilitation Unit, ICS Maugeri IRCCS, Mistretta, Italy
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - John M Nolan
- Drew University, Caspersen School of Graduate Studies, Madison, NJ, USA
| | | | - Irene Tramacere
- Scientific Directorate, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Giuseppe Lauria
- 3rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy.,Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| |
Collapse
|
7
|
Kiernan MC, Vucic S, Talbot K, McDermott CJ, Hardiman O, Shefner JM, Al-Chalabi A, Huynh W, Cudkowicz M, Talman P, Van den Berg LH, Dharmadasa T, Wicks P, Reilly C, Turner MR. Improving clinical trial outcomes in amyotrophic lateral sclerosis. Nat Rev Neurol 2021; 17:104-118. [PMID: 33340024 PMCID: PMC7747476 DOI: 10.1038/s41582-020-00434-z] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 12/11/2022]
Abstract
Individuals who are diagnosed with amyotrophic lateral sclerosis (ALS) today face the same historically intransigent problem that has existed since the initial description of the disease in the 1860s - a lack of effective therapies. In part, the development of new treatments has been hampered by an imperfect understanding of the biological processes that trigger ALS and promote disease progression. Advances in our understanding of these biological processes, including the causative genetic mutations, and of the influence of environmental factors have deepened our appreciation of disease pathophysiology. The consequent identification of pathogenic targets means that the introduction of effective therapies is becoming a realistic prospect. Progress in precision medicine, including genetically targeted therapies, will undoubtedly change the natural history of ALS. The evolution of clinical trial designs combined with improved methods for patient stratification will facilitate the translation of novel therapies into the clinic. In addition, the refinement of emerging biomarkers of therapeutic benefits is critical to the streamlining of care for individuals. In this Review, we synthesize these developments in ALS and discuss the further developments and refinements needed to accelerate the introduction of effective therapeutic approaches.
Collapse
Affiliation(s)
- Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia.
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.
| | - Steve Vucic
- Sydney Medical School Westmead, University of Sydney, Sydney, New South Wales, Australia
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Christopher J McDermott
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
- NIHR Sheffield Biomedical Research Centre, Sheffield, UK
| | - Orla Hardiman
- Academic Neurology Unit, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- National Neuroscience Centre, Beaumont Hospital, Dublin, Ireland
| | - Jeremy M Shefner
- Department of Neurology, Barrow Neurological Institute, University of Arizona College of Medicine Phoenix, Creighton University, Phoenix, AZ, USA
| | - Ammar Al-Chalabi
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, London, UK
| | - William Huynh
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Merit Cudkowicz
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Paul Talman
- Neurosciences Department, Barwon Health District, Melbourne, Victoria, Australia
| | - Leonard H Van den Berg
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Thanuja Dharmadasa
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Paul Wicks
- Wicks Digital Health, Lichfield, United Kingdom
| | - Claire Reilly
- The Motor Neurone Disease Association of New Zealand, Auckland, New Zealand
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
ALSUntangled 56: “ten red flags”-things to be wary of in alternative or off-label products. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21:642-647. [DOI: 10.1080/21678421.2020.1765518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Udeh‐Momoh CT, de Jager‐Loots CA, Price G, Middleton LT. Transition from physical to virtual visit format for a longitudinal brain aging study, in response to the Covid-19 pandemic. Operationalizing adaptive methods and challenges. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2020; 6:e12055. [PMID: 32885022 PMCID: PMC7453144 DOI: 10.1002/trc2.12055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/09/2020] [Indexed: 11/18/2022]
Abstract
The COVID-19 pandemic necessitated adaptations to standard operations and management of clinical studies, after lockdown measures put in place by several governments to reduce the spread of SARS-COV-2. In this paper, we describe our telehealth strategy developed for transitioning our dementia prevention clinical observational prospective study from face-to-face visits to virtual visits, to ensure the ongoing collection of longitudinal data. We share the lessons learned in terms of challenges experienced and solutions implemented to achieve successful administration of study assessments. Our methods will be useful for informing longitudinal observational or interventional studies that require a feasible model for remote data collection, in cognitively unimpaired adults.
Collapse
Affiliation(s)
- Chinedu Theresa Udeh‐Momoh
- Aging Epidemiology (AGE) Research UnitSchool of Public HealthImperial College LondonLondonUnited Kingdom
| | - Celeste A. de Jager‐Loots
- Aging Epidemiology (AGE) Research UnitSchool of Public HealthImperial College LondonLondonUnited Kingdom
| | - Geraint Price
- Aging Epidemiology (AGE) Research UnitSchool of Public HealthImperial College LondonLondonUnited Kingdom
| | - Lefkos T. Middleton
- Aging Epidemiology (AGE) Research UnitSchool of Public HealthImperial College LondonLondonUnited Kingdom
- Directorate of Public HealthImperial College Healthcare NHS TrustLondonUnited Kingdom
| |
Collapse
|
10
|
Berry JD, Bedlack R, Mathews D, Agnese W, Apple S. Engaging ALS patients and caregivers (the ALS research ambassadors) to help design the REFINE-ALS biomarker study. Amyotroph Lateral Scler Frontotemporal Degener 2020; 22:147-150. [PMID: 32838576 DOI: 10.1080/21678421.2020.1804939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In the planning and design of the Radicava/Edaravone Findings in Biomarkers From Amyotrophic Lateral Sclerosis (REFINE-ALS) study, we sought to elicit feedback from patients with ALS and their caregivers to ensure that patient-centric issues would be addressed. Ten ALS Clinical Research Learning Institute (ALS-CRLI) Research Ambassadors participated in 2 meetings. They provided perspectives on patients' interest in the study, the schedule of study visits, and data sharing. The findings were used to help revise the study design, as appropriate. Key concerns identified were (1) the frequency of sample collections, (2) participant travel burden, (3) enrollment criteria, and (4) data reporting and sharing with participants. Several of the identified issues were promptly addressed. The number of visits was reduced, travel optimized, entry criteria clarified, and plans for sharing participants' data with them were codified. The feedback from the Ambassadors was substantive and resulted in constructive patient-centric changes to the study protocol.
Collapse
Affiliation(s)
- James D Berry
- Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Boston, MA, USA
| | | | - Debra Mathews
- Johns Hopkins Berman Institute of Bioethics, Baltimore, MD, USA
| | - Wendy Agnese
- Formerly Mitsubishi Tanabe Pharma America, Inc., Jersey City, NJ, USA, and
| | - Stephen Apple
- Mitsubishi Tanabe Pharma America, Inc., Jersey City, NJ, USA
| |
Collapse
|
11
|
Schneider RB, Myers TL, Rowbotham HM, Luff MK, Amodeo K, Sharma S, Wilson R, Jensen-Roberts S, Auinger P, McDermott MP, Alcalay RN, Biglan K, Kinel D, Tanner C, Winter-Evans R, Augustine EF, Cannon P, Holloway RG, Dorsey ER. A Virtual Cohort Study of Individuals at Genetic Risk for Parkinson's Disease: Study Protocol and Design. JOURNAL OF PARKINSONS DISEASE 2020; 10:1195-1207. [PMID: 32568109 PMCID: PMC7505001 DOI: 10.3233/jpd-202019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: The rise of direct-to-consumer genetic testing has enabled many to learn of their possible increased risk for rare diseases, some of which may be suitable for gene-targeted therapies. However, recruiting a large and representative population for rare diseases or genetically defined sub-populations of common diseases is slow, difficult, and expensive. Objective: To assess the feasibility of recruiting and retaining a cohort of individuals who carry a genetic mutation linked to Parkinson’s disease (G2019S variant of LRRK2); to characterize this cohort relative to the characteristics of traditional, in-person studies; and to evaluate this model’s ability to create an engaged study cohort interested in future clinical trials of gene-directed therapies. Methods: This single-site,3-year national longitudinal observational study will recruit between 250 to 350 LRRK2 carriers without Parkinson’s disease and approximately 50 with the condition. Participants must have undergone genetic testing by the personal genetics company, 23andMe, Inc., have knowledge of their carrier status, and consent to be contacted for research studies. All participants undergo standardized assessments, including video-based cognitive and motor examination, and complete patient-reported outcomes on an annual basis. Results: 263 individuals living in 33 states have enrolled. The cohort has a mean (SD) age of 56.0 (15.9) years, 59% are female, and 76% are of Ashkenazi Jewish descent. 233 have completed the baseline visit: 47 with self-reported Parkinson’s disease and 186 without. Conclusions: This study establishes a promising model for developing a geographically dispersed and well-characterized cohort ready for participation in future clinical trials of gene-directed therapies.
Collapse
Affiliation(s)
- Ruth B Schneider
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA.,Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, USA
| | - Taylor L Myers
- Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, USA
| | | | | | - Katherine Amodeo
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Saloni Sharma
- Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, USA
| | - Renee Wilson
- Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, USA
| | - Stella Jensen-Roberts
- Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, USA
| | - Peggy Auinger
- Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael P McDermott
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA.,Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, USA.,Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Roy N Alcalay
- Department of Neurology, Columbia University, New York, NY, USA
| | - Kevin Biglan
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA.,Eli Lilly and Company, Indianapolis, IN, USA
| | - Daniel Kinel
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA.,Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, USA
| | - Caroline Tanner
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | | | - Erika F Augustine
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA.,Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, USA
| | | | | | - Robert G Holloway
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - E Ray Dorsey
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA.,Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
12
|
Van Es MA, Van Eijk RPA, Bunte TM, Van Den Berg LH. A placebo-controlled trial to investigate the safety and efficacy of Penicillin G/Hydrocortisone in patients with ALS (PHALS trial). Amyotroph Lateral Scler Frontotemporal Degener 2020; 21:584-592. [PMID: 32627599 DOI: 10.1080/21678421.2020.1788093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE A recent case-series described patients with ALS to improve and/or stabilize after treatment with intravenous high-dose Penicillin G/Hydrocortisone (PenGH). In this study, we determine the safety and efficacy of intravenous PenGH versus placebo in combination with riluzole in patients with ALS. METHODS Patients diagnosed with ALS according to the El Escorial criteria were randomized double-blind to four quarterly cycles of 21 d of intravenous PenGH or placebo in a 5:3 ratio. The primary outcome was change from baseline to week 48 in Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R). Secondary outcomes were lung function, muscle strength, plasma creatinine, clinical stage, gastrostomy placement, quality of life and occurrence of adverse of events. RESULTS In total, 16 patients were randomized (10 PenGH and 6 placebo), of which 6 (40%) completed the study. Patients treated with PenGH progressed with 2.2 (95% CI 1.1-3.3) ALSFRS-R points per month and PenGH treatment did not halt disease progression (p = 0.002). No significant differences were found between PenGH or placebo (mean difference 0.5, 95% CI -1.01 to ∞, p = 0.28). Although PenGH was well-tolerated, 6 patients (38%, 3 in each arm) had thrombotic complications due to the intravenous administration method. CONCLUSIONS Treatment with PenGH does not halt disease or reverse progression in patients with ALS and showed no statistical difference with those who received placebo. Prolonged intravenous administration therapies may inflate thrombosis risk.
Collapse
Affiliation(s)
- Michael A Van Es
- Department of Neurology, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Ruben P A Van Eijk
- Department of Neurology, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, the Netherlands.,Biostatistics & Research Support, Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Tommy M Bunte
- Department of Neurology, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Leonard H Van Den Berg
- Department of Neurology, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht, the Netherlands
| |
Collapse
|
13
|
Rutkove SB, Narayanaswami P, Berisha V, Liss J, Hahn S, Shelton K, Qi K, Pandeya S, Shefner JM. Improved ALS clinical trials through frequent at-home self-assessment: a proof of concept study. Ann Clin Transl Neurol 2020; 7:1148-1157. [PMID: 32515889 PMCID: PMC7359124 DOI: 10.1002/acn3.51096] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To determine the potential for improving amyotrophic lateral sclerosis (ALS) clinical trials by having patients or caregivers perform frequent self-assessments at home. METHODS AND PARTICIPANTS We enrolled ALS patients into a nonblinded, longitudinal 9-month study in which patients and caregivers obtained daily data using several different instruments, including a slow-vital capacity device, a hand grip dynamometer, an electrical impedance myography-based fitness device, an activity tracker, a speech app, and the ALS functional rating scale-revised. Questions as to acceptability were asked at two time points. RESULTS A total of 113 individuals enrolled, with 61 (43 men, 18 women, mean age 60.1 ± 9.9 years) collecting a minimum of 7 days data and being included in the analysis. Daily measurements resulted in more accurate assessments of the slope of progression of the disease, resulting in smaller sample size estimates for a hypothetical clinical trial. For example, by performing daily slow-vital capacity measurements, calculated sample size was reduced to 182 subjects/study arm from 882/arm for monthly measurements. Similarly, performing the ALS functional rating scale weekly rather than monthly led to a calculated sample size of 73/arm as compared to 274/arm. Participants generally found the procedures acceptable and, for many, improved their sense of control of their disease. INTERPRETATION Frequent at-home measurements using standard tools holds the prospect of tracking progression and reducing sample size requirements for clinical trials in ALS while also being acceptable to the patients. Future studies in this and other neurological disorders should consider adopting this approach to data collection.
Collapse
Affiliation(s)
- Seward B Rutkove
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | - Julie Liss
- Arizona State University, Phoenix, AZ, USA
| | - Shira Hahn
- Arizona State University, Phoenix, AZ, USA
| | | | - Kristin Qi
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sarbesh Pandeya
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
14
|
Bedlack R, Pogemiller A, Shefner J, Cudkowicz M, Heiman-Patterson T. ALS clinical research learning institutes (ALS-CRLI): empowering people with ALS to be research ambassadors. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21:216-221. [PMID: 32458763 DOI: 10.1080/21678421.2019.1690519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective: Patient engagement in research is increasingly recognized as important across many countries and fields. In 2008, we conducted surveys that suggested a need for improved patient engagement in ALS research. We decided to create an ALS Clinical Research Learning Institute (ALS-CRLI) to facilitate direct interactions between researchers and people with ALS and their caregivers, toward ultimately improving engagement. Methods: Initially modeled after a similar program in Parkinson's disease, our ALS-CRLI is a multi-day collection of formal courses for people with ALS and their caregivers, moderated by clinicians, scientists and patient advocates. Previous graduates (called ALS Research Ambassadors) engage with the current class participants before, during and after the courses. Prior to the courses, Research Ambassadors serve as "mentors" to the participants, offering guidance and setting expectations. Feedback during the courses is used to change the way researchers design and advertise studies, and feedback after the courses is used to improve the agenda for subsequent ALS-CRLIs. Funding is provided by patient advocacy groups including the ALS Association and ALS Hope Foundation. Research Ambassadors are provided with ongoing mentoring and notifications about opportunities for engagement via regular teleconferences with the Northeast ALS Consortium's Patient Education and Advocacy Committee and their own Facebook page. Engagement and advocacy efforts are tracked using a tool on the Northeast ALS Consortium's website. Results and Conclusions: We have now held 15 ALS-CRLIs at various locations within the United States, resulting in over 320 graduated ALS Research Ambassadors. From these engagements, researchers have been prompted to formally include patients in the design process, to design more patient-centric trials and to create new ways to help patients find trials. Research ambassadors are improving awareness and clearing up misconceptions about participation in research, improving research availability, and helping to create more patient-centric trial designs. In addition, we are now creating an ALS-CRLI Toolkit that will facilitate ALS-CRLIs throughout the world. This will be housed on the Northeast ALS Consortium website.
Collapse
Affiliation(s)
| | | | - Jeremy Shefner
- Departments of Neurology, Barrow Neurological Institute, University of Arizona College of Medicine, Creighton University, Phoenix, AZ, USA
| | - Merit Cudkowicz
- Sean M Healey & AMG Center for ALS, Mass General Hospital, Boston, MA, USA, and
| | | |
Collapse
|
15
|
Moos WH, Faller DV, Glavas IP, Harpp DN, Kanara I, Mavrakis AN, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Sampani K, Steliou K, Vavvas DG, Zamboni RJ, Kodukula K, Chen X. Klotho Pathways, Myelination Disorders, Neurodegenerative Diseases, and Epigenetic Drugs. Biores Open Access 2020; 9:94-105. [PMID: 32257625 PMCID: PMC7133426 DOI: 10.1089/biores.2020.0004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this review we outline a rationale for identifying neuroprotectants aimed at inducing endogenous Klotho activity and expression, which is epigenetic action, by definition. Such an approach should promote remyelination and/or stimulate myelin repair by acting on mitochondrial function, thereby heralding a life-saving path forward for patients suffering from neuroinflammatory diseases. Disorders of myelin in the nervous system damage the transmission of signals, resulting in loss of vision, motion, sensation, and other functions depending on the affected nerves, currently with no effective treatment. Klotho genes and their single-pass transmembrane Klotho proteins are powerful governors of the threads of life and death, true to the origin of their name, Fates, in Greek mythology. Among its many important functions, Klotho is an obligatory co-receptor that binds, activates, and/or potentiates critical fibroblast growth factor activity. Since the discovery of Klotho a little over two decades ago, it has become ever more apparent that when Klotho pathways go awry, oxidative stress and mitochondrial dysfunction take over, and age-related chronic disorders are likely to follow. The physiological consequences can be wide ranging, potentially wreaking havoc on the brain, eye, kidney, muscle, and more. Central nervous system disorders, neurodegenerative in nature, and especially those affecting the myelin sheath, represent worthy targets for advancing therapies that act upon Klotho pathways. Current drugs for these diseases, even therapeutics that are disease modifying rather than treating only the symptoms, leave much room for improvement. It is thus no wonder that this topic has caught the attention of biomedical researchers around the world.
Collapse
Affiliation(s)
- Walter H. Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, San Francisco, California
- ShangPharma Innovation, Inc., South San Francisco, California
| | - Douglas V. Faller
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
| | - Ioannis P. Glavas
- Department of Ophthalmology, New York University School of Medicine, New York, New York
| | - David N. Harpp
- Department of Chemistry, McGill University, Montreal, Canada
| | | | - Anastasios N. Mavrakis
- Department of Medicine, Tufts University School of Medicine, St. Elizabeth's Medical Center, Boston, Massachusetts
| | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, Massachusetts
| | - Mark Pernokas
- Advanced Dental Associates of New England, Woburn, Massachusetts
| | - Carl A. Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Whitney R. Powers
- Department of Health Sciences, Boston University, Boston, Massachusetts
- Department of Anatomy, Boston University School of Medicine, Boston, Massachusetts
| | - Konstantina Sampani
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
- PhenoMatriX, Inc., Natick, Massachusetts
| | - Demetrios G. Vavvas
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | | | | | - Xiaohong Chen
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| |
Collapse
|
16
|
|