1
|
Grewal J, Eng JJ, Sakakibara BM, Schmidt J. The use of virtual reality for activities of daily living rehabilitation after brain injury: A scoping review. Aust Occup Ther J 2024; 71:868-893. [PMID: 38757659 DOI: 10.1111/1440-1630.12957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Individuals with acquired brain injury (ABI) experience high rates of poor functional outcomes such as inability to complete activities of daily living (ADL). Occupational therapy needs to be customised to the individual's function, goals, and environment to facilitate improvement in ADLs after ABI. Virtual reality (VR) is a novel treatment approach that aims to improve skills within an individualised environment. This study aimed to review the current literature for the use of VR platforms that incorporate ADLs to improve functional outcomes after ABI. METHODS This review followed the six-stage framework by Arksey & O'Malley (2005). Electronic databases were searched for peer-reviewed journal articles based on inclusion and exclusion criteria. RESULTS One thousand and six hundred eighty articles were screened, including 413 full text articles and 13 articles were included for review. Among the 13 articles, six were RCTs and the rest were pre-post intervention studies. Studies largely used non-immersive VR platforms, which incorporated ADLs such as grocery shopping, aiming to improve functional outcomes. CONSUMER AND COMMUNITY CONSULTATION Consumer and community were not involved in executing this study. CONCLUSION This review suggests mixed results if VR is effective at treating upper limb, cognition, and ADL function after ABI. Using their clinical reasoning, occupational therapists can determine the suitability of VR for ADL rehabilitation for specific patient populations and settings. Plain Language Summary Individuals who sustain an acquired brain injury can have difficulty performing their daily activities such as, making a meal or getting dressed, because of limited function (e.g., physical and cognitive problems). To help improve their ability to complete daily activities, occupational therapy needs to be customised to the individual's function, goals, and environment. Virtual reality is a new rehabilitation approach that allows individuals to improve their function in an individualised environment. In this study, we reviewed the current studies that have used virtual reality platforms that incorporate daily activities to improve function after acquired brain injury. We searched databases and screened the titles and abstracts of 1,680 studies. Then, 413 full-text studies were screened, and 13 studies were included. Studies mostly used non-immersive platforms to practise daily activities such as, grocery shopping, aiming to improve function after acquired brain injury. This review suggests mixed results if virtual reality can effectively treat function after acquired brain injury.
Collapse
Affiliation(s)
- Jasleen Grewal
- Rehabilitation Sciences Graduate Program, University of British Columbia, Canada
- Rehabilitation Research Program, Centre for Aging SMART at Vancouver Coastal Health, Canada
| | - Janice J Eng
- Rehabilitation Research Program, Centre for Aging SMART at Vancouver Coastal Health, Canada
- Department of Physical Therapy, University of British Columbia, Canada
| | - Brodie M Sakakibara
- Rehabilitation Research Program, Centre for Aging SMART at Vancouver Coastal Health, Canada
- Centre for Chronic Disease Prevention and Management, Canada
- Department of Occupational Science and Occupational Therapy, University of British Columbia, Canada
| | - Julia Schmidt
- Rehabilitation Research Program, Centre for Aging SMART at Vancouver Coastal Health, Canada
- Department of Occupational Science and Occupational Therapy, University of British Columbia, Canada
| |
Collapse
|
2
|
Tang Z, Cui Z, Wang H, Liu P, Xu X, Yang K. A 4-DOF Exosuit Using a Hybrid EEG-Based Control Approach for Upper-Limb Rehabilitation. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2024; 12:622-634. [PMID: 39464623 PMCID: PMC11505961 DOI: 10.1109/jtehm.2024.3454077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 10/29/2024]
Abstract
Rehabilitation devices, such as traditional rigid exoskeletons or exosuits, have been widely used to rehabilitate upper limb function post-stroke. In this paper, we have developed an exosuit with four degrees of freedom to enable users to involve more joints in the rehabilitation process. Additionally, a hybrid electroencephalogram-based (EEG-based) control approach has been developed to promote active user engagement and provide more control commands.The hybrid EEG-based control approach includes steady-state visual evoked potential (SSVEP) paradigm and motor imagery (MI) paradigm. Firstly, the rehabilitation movement was selected by SSVEP paradigm, and the multivariate variational mode decomposition (MVMD) and canonical correlation analysis (CCA) method was used for SSVEP EEG recognition; then, the motion intention was obtained by MI paradigm, and the convolutional neural network (CNN) and long short-term memory network (LSTM) were used to build a CNN-LSTM model for MI EEG recognition; finally, the recognition results were translated into control commands of Bowden cables to achieve multi-degree-of-freedom rehabilitation.Experimental results show that the average classification accuracy of the CNN-LSTM model reaches to 90.07% ± 2.23%, and the overall accuracy of the hybrid EEG-based control approach reaches to 85.26% ± 1.95%. The twelve subjects involved in the usability assessment demonstrated an average system usability scale (SUS) score of 81.25 ± 5.82. Additionally, four participants who underwent a 35-day rehabilitation training demonstrated an average 10.33% increase in range of motion (ROM) across 4 joints, along with a 11.35% increase in the average electromyography (EMG) amplitude of the primary muscle involved.The exosuit demonstrates good accuracy in control, exhibits favorable usability, and shows certain efficacy in multi-joint rehabilitation. Our study has taken into account the neuroplastic principles, aiming to achieve active user engagement while introducing additional degrees of freedom, offering novel ideas and methods for potential brain-computer interface (BCI)-based rehabilitation strategies and hardware development.Clinical impact: Our study presents an exosuit with four degrees of freedom for stroke rehabilitation, enabling multi-joint movement and improved motor recovery. The hybrid EEG-based control approach enhances active user engagement, offering a promising strategy for more effective and user-driven rehabilitation, potentially improving clinical outcomes.Clinical and Translational Impact Statement: By developing an exosuit and a hybrid EEG-based control approach, this study enhances stroke rehabilitation through better user engagement and multi-joint capabilities. These innovations consider neuroplasticity principles, integrating rehabilitation theory with rehabilitation device.
Collapse
Affiliation(s)
- Zhichuan Tang
- Industrial Design Institute, Zhejiang University of TechnologyHangzhou310023China
- Faculty of Science and TechnologyBournemouth UniversityBH12 5BBPooleU.K.
| | - Zhixuan Cui
- Industrial Design Institute, Zhejiang University of TechnologyHangzhou310023China
| | - Hang Wang
- Industrial Design Institute, Zhejiang University of TechnologyHangzhou310023China
| | - Pengcheng Liu
- Department of Computer ScienceUniversity of YorkYO10 5DDYorkU.K.
| | - Xuan Xu
- Industrial Design Institute, Zhejiang University of TechnologyHangzhou310023China
| | - Keshuai Yang
- Industrial Design Institute, Zhejiang University of TechnologyHangzhou310023China
| |
Collapse
|
3
|
Ceradini M, Losanno E, Micera S, Bandini A, Orlandi S. Immersive VR for upper-extremity rehabilitation in patients with neurological disorders: a scoping review. J Neuroeng Rehabil 2024; 21:75. [PMID: 38734690 PMCID: PMC11088157 DOI: 10.1186/s12984-024-01367-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Neurological disorders, such as stroke and chronic pain syndromes, profoundly impact independence and quality of life, especially when affecting upper extremity (UE) function. While conventional physical therapy has shown effectiveness in providing some neural recovery in affected individuals, there remains a need for improved interventions. Virtual reality (VR) has emerged as a promising technology-based approach for neurorehabilitation to make the patient's experience more enjoyable. Among VR-based rehabilitation paradigms, those based on fully immersive systems with headsets have gained significant attention due to their potential to enhance patient's engagement. METHODS This scoping review aims to investigate the current state of research on the use of immersive VR for UE rehabilitation in individuals with neurological diseases, highlighting benefits and limitations. We identified thirteen relevant studies through comprehensive searches in Scopus, PubMed, and IEEE Xplore databases. Eligible studies incorporated immersive VR for UE rehabilitation in patients with neurological disorders and evaluated participants' neurological and motor functions before and after the intervention using clinical assessments. RESULTS Most of the included studies reported improvements in the participants rehabilitation outcomes, suggesting that immersive VR represents a valuable tool for UE rehabilitation in individuals with neurological disorders. In addition, immersive VR-based interventions hold the potential for personalized and intensive training within a telerehabilitation framework. However, further studies with better design are needed for true comparison with traditional therapy. Also, the potential side effects associated with VR head-mounted displays, such as dizziness and nausea, warrant careful consideration in the development and implementation of VR-based rehabilitation programs. CONCLUSION This review provides valuable insights into the application of immersive VR in UE rehabilitation, offering the foundation for future research and clinical practice. By leveraging immersive VR's potential, researchers and rehabilitation specialists can design more tailored and patient-centric rehabilitation strategies, ultimately improving the functional outcome and enhancing the quality of life of individuals with neurological diseases.
Collapse
Affiliation(s)
- Matteo Ceradini
- The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy.
| | - Elena Losanno
- The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
- Modular Implantable Neuroprostheses (MINE) Laboratory, Università Vita-Salute San Raffaele & Scuola Superiore Sant'Anna, Milan, Italy
| | - Silvestro Micera
- The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
- Modular Implantable Neuroprostheses (MINE) Laboratory, Università Vita-Salute San Raffaele & Scuola Superiore Sant'Anna, Milan, Italy
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Andrea Bandini
- The Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
- Modular Implantable Neuroprostheses (MINE) Laboratory, Università Vita-Salute San Raffaele & Scuola Superiore Sant'Anna, Milan, Italy
- Health Science Interdisciplinary Research Center, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Silvia Orlandi
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi", University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
4
|
Chang H, Woo SH, Kang S, Lee CY, Lee JY, Ryu JK. A curtailed task for quantitative evaluation of visuomotor adaptation in the head-mounted display virtual reality environment. Front Psychiatry 2022; 13:963303. [PMID: 36895426 PMCID: PMC9989973 DOI: 10.3389/fpsyt.2022.963303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/26/2022] [Indexed: 02/18/2023] Open
Abstract
To accurately perform a goal-directed movement in continuously changing environments, it is unavoidable for individuals to adapt accordingly. The cerebellum has been known to be responsible for such process, specifically adaptation using sensorimotor information. As shown in previous studies, using HMD-VR technology in an experimental setting has similar advantages as in the real-world environment: researchers can manipulate the experimental environment, precisely control the experiments, and quantitatively analyze errors in real time. Moreover, the HMD-VR environment provides high immersiveness and embodiment which even enhance motor learning and increase engagement and motivation of individuals more than real-world environments do. In our HMD-VR-based task, the subjects were trained to adapt to a condition in which the visual information was artificially 20°clockwise rotated from the actual cursor movement. The subjects used a virtual reality tracker to move the cursor from a starting point to a target that appeared randomly at five locations, 20 cm from the starting point with an interval of 15°. Although no significant side effects were expected from experiencing the HMD-VR environment, we considered the appropriate number of trials for patients with cerebellar disease for future use in clinical settings. To examine the feasibility of our task for analysis of visuomotor adaptation pattern as shown in a real-world-based task, we created and compared two paradigms with a difference in the number of trials. As we expected, the results showed that the heading angle error decreased as the participants of both paradigms continued the task and that there was no significant difference between the two paradigms. Next, we applied our short task paradigm to patients diagnosed with cerebellar ataxia and age-matched controls for further examination of applicability to diagnosis and rehabilitation of the patients. As a result, we observed the distinguishable adaptation pattern of the patient group by using our paradigm. Overall, the results suggest that our paradigm is feasible to analyze the visuomotor adaptation pattern of healthy individuals and patients with cerebellar ataxia so may contribute to the clinical field.
Collapse
Affiliation(s)
- Huiyeong Chang
- Interdisciplinary Program in Cognitive Science, Seoul National University, Seoul, Republic of Korea.,Laboratory for Natural and Artificial Kinästhese, Convergence Research Center for Artificial Intelligence, Dongguk University, Seoul, Republic of Korea
| | - Sung-Ho Woo
- Laboratory for Natural and Artificial Kinästhese, Convergence Research Center for Artificial Intelligence, Dongguk University, Seoul, Republic of Korea
| | - Sura Kang
- Laboratory for Natural and Artificial Kinästhese, Convergence Research Center for Artificial Intelligence, Dongguk University, Seoul, Republic of Korea.,Human Development and Rehabilitation, Graduate School of Science in Education Service, Dongguk University, Seoul, Republic of Korea
| | - Chan Young Lee
- Department of Neurology, Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Jee-Young Lee
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeh-Kwang Ryu
- Laboratory for Natural and Artificial Kinästhese, Convergence Research Center for Artificial Intelligence, Dongguk University, Seoul, Republic of Korea.,Human Development and Rehabilitation, Graduate School of Science in Education Service, Dongguk University, Seoul, Republic of Korea.,Department of Physical Education, Dongguk University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Haptic-Enabled Hand Rehabilitation in Stroke Patients: A Scoping Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is a plethora of technology-assisted interventions for hand therapy, however, less is known about the effectiveness of these interventions. This scoping review aims to explore studies about technology-assisted interventions targeting hand rehabilitation to identify the most effective interventions. It is expected that multifaceted interventions targeting hand rehabilitation are more efficient therapeutic approaches than mono-interventions. The scoping review will aim to map the existing haptic-enabled interventions for upper limb rehabilitation and investigates their effects on motor and functional recovery in patients with stroke. The methodology used in this review is based on the Arksey and O’Malley framework, which includes the following stages: identifying the research question, identifying relevant studies, study selection, charting the data, and collating, summarizing, and reporting the results. Results show that using three or four different technologies was more positive than using two technologies (one technology + haptics). In particular, when standardized as a percentage of outcomes, the combination of three technologies showed better results than the combination of haptics with one technology or with three other technologies. To conclude, this study portrayed haptic-enabled rehabilitation approaches that could help therapists decide which technology-enabled hand therapy approach is best suited to their needs. Those seeking to undertake research and development anticipate further opportunities to develop haptic-enabled hand telerehabilitation platforms.
Collapse
|
6
|
Erhardsson M, Alt Murphy M, Sunnerhagen KS. Commercial head-mounted display virtual reality for upper extremity rehabilitation in chronic stroke: a single-case design study. J Neuroeng Rehabil 2020; 17:154. [PMID: 33228710 PMCID: PMC7686731 DOI: 10.1186/s12984-020-00788-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/13/2020] [Indexed: 12/22/2022] Open
Abstract
Background Rehabilitation is crucial for maximizing recovery after stroke. Rehabilitation activities that are fun and rewarding by themselves can be more effective than those who are not. Gamification with virtual reality (VR) exploits this principle. This single-case design study probes the potential for using commercial off-the-shelf, room-scale head-mounted virtual reality for upper extremity rehabilitation in individuals with chronic stroke, the insights of which can inform further research. Methods A heterogeneous volunteer sample of seven participants living with stroke were recruited through advertisement. A single-case design was employed with a 5-week baseline (A), followed by a 10-week intervention (B) and a 6-month follow-up. Upper extremity motor function was assessed with validated kinematic analysis of drinking task. Activity capacity was assessed with Action Research Arm Test, Box and Block Test and ABILHAND questionnaire. Assessments were done weekly and at follow-up. Playing games on a VR-system with head-mounted display (HTC Vive) was used as rehabilitation intervention. Approximately 300 games were screened and 6 tested. Visual analysis and Tau-U statistics were used to interpret the results. Results Visual analysis of trend, level shift and overlap as well as Tau-U statistics indicated improvement of Action Research Arm Test in six participants. Four of these had at least a moderate Tau-U score (0.50–0.92), in at least half of the assessed outcomes. These four participants trained a total of 361 to 935 min. Two out of four participants who were able to perform the drinking task, had the highest training dose (> 900 min) and showed also improvements in kinematics. The predominant game played was Beat Saber. No serious adverse effects related to the study were observed, one participant interrupted the intervention phase due to a fall at home. Conclusions This first study of combining commercial games, a commercial head-mounted VR, and commercial haptic hand controls, showed promising results for upper extremity rehabilitation in individuals with chronic stroke. By being affordable yet having high production values, as well as being an easily accessible off-the-shelf product, this variant of VR technology might facilitate widespread adaption. Insights garnered in this study can facilitate the execution of future studies. Trial registration The study was registered at researchweb.org (project number 262331, registered 2019-01-30, https://www.researchweb.org/is/vgr/project/262331) prior to participant enrolment.
Collapse
Affiliation(s)
- Mattias Erhardsson
- Institute of Neuroscience and Physiology, Clinical Neuroscience, Rehabilitation Medicine, Sahlgrenska Academy, University of Gothenburg, Per Dubbsgatan 14, 3rd Floor, 41345, Gothenburg, Sweden.,Institute of Biomedicine, Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 9 A, 413 90, Gothenburg, Sweden
| | - Margit Alt Murphy
- Institute of Neuroscience and Physiology, Clinical Neuroscience, Rehabilitation Medicine, Sahlgrenska Academy, University of Gothenburg, Per Dubbsgatan 14, 3rd Floor, 41345, Gothenburg, Sweden.
| | - Katharina S Sunnerhagen
- Institute of Neuroscience and Physiology, Clinical Neuroscience, Rehabilitation Medicine, Sahlgrenska Academy, University of Gothenburg, Per Dubbsgatan 14, 3rd Floor, 41345, Gothenburg, Sweden
| |
Collapse
|