1
|
Borges FO, Sampaio E, Santos CP, Rosa R. Climate-Change Impacts on Cephalopods: A Meta-Analysis. Integr Comp Biol 2023; 63:1240-1265. [PMID: 37468442 DOI: 10.1093/icb/icad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023] Open
Abstract
Aside from being one of the most fascinating groups of marine organisms, cephalopods play a major role in marine food webs, both as predators and as prey, while representing key living economic assets, namely for artisanal and subsistence fisheries worldwide. Recent research suggests that cephalopods are benefitting from ongoing environmental changes and the overfishing of certain fish stocks (i.e., of their predators and/or competitors), putting forward the hypothesis that this group may be one of the few "winners" of climate change. While many meta-analyses have demonstrated negative and overwhelming consequences of ocean warming (OW), acidification (OA), and their combination for a variety of marine taxa, such a comprehensive analysis is lacking for cephalopod molluscs. In this context, the existing literature was surveyed for peer-reviewed articles featuring the sustained (≥24 h) and controlled exposure of cephalopod species (Cephalopoda class) to these factors, applying a comparative framework of mixed-model meta-analyses (784 control-treatment comparisons, from 47 suitable articles). Impacts on a wide set of biological categories at the individual level (e.g., survival, metabolism, behavior, cell stress, growth) were evaluated and contrasted across different ecological attributes (i.e., taxonomic lineages, climates, and ontogenetic stages). Contrary to what is commonly assumed, OW arises as a clear threat to cephalopods, while OA exhibited more restricted impacts. In fact, OW impacts were ubiquitous across different stages of ontogeny, taxonomical lineages (i.e., octopuses, squids, and cuttlefish). These results challenge the assumption that cephalopods benefit from novel ocean conditions, revealing an overarching negative impact of OW in this group. Importantly, we also identify lingering literature gaps, showing that most studies to date focus on OW and early life stages of mainly temperate species. Our results raise the need to consolidate experimental efforts in a wider variety of taxa, climate regions, life stages, and other key environmental stressors, such as deoxygenation and hypoxia, to better understand how cephalopods will cope with future climate change.
Collapse
Affiliation(s)
- Francisco O Borges
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Cascais, Lisboa 1749-016, Portugal
| | - Eduardo Sampaio
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Universitatsstrasse 10, Konstanz 78464, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz 78464, Germany
- Department of Biology, University of Konstanz, Universitatsstrasse 10, Konstanz 78464, Germany
| | - Catarina P Santos
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Cascais, Lisboa 1749-016, Portugal
- Environmental Economics Knowledge Center, Nova School of Business and Economics, New University of Lisbon, Carcavelos 2775-405, Portugal
- Sphyrna Association, Boa Vista Island, Sal Rei, Cape Verde
| | - Rui Rosa
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Cascais, Lisboa 1749-016, Portugal
- Department of Animal Biology, Faculdade de Ciências da Universidade de Lisboa, Lisboa1 749-016, Portugal
| |
Collapse
|
2
|
Tresguerres M, Kwan GT, Weinrauch A. Evolving views of ionic, osmotic and acid-base regulation in aquatic animals. J Exp Biol 2023; 226:jeb245747. [PMID: 37522267 DOI: 10.1242/jeb.245747] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The regulation of ionic, osmotic and acid-base (IOAB) conditions in biological fluids is among the most fundamental functions in all organisms; being surrounded by water uniquely shapes the IOAB regulatory strategies of water-breathing animals. Throughout its centennial history, Journal of Experimental Biology has established itself as a premier venue for publication of comparative, environmental and evolutionary studies on IOAB regulation. This Review provides a synopsis of IOAB regulation in aquatic animals, some of the most significant research milestones in the field, and evolving views about the underlying cellular mechanisms and their evolutionary implications. It also identifies promising areas for future research and proposes ideas for enhancing the impact of aquatic IOAB research.
Collapse
Affiliation(s)
- Martin Tresguerres
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92037, USA
| | - Garfield T Kwan
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA 95616, USA
| | - Alyssa Weinrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2M5, Canada
| |
Collapse
|
3
|
Guo X, Huang M, Luo X, You W, Ke C. Effects of one-year exposure to ocean acidification on two species of abalone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158144. [PMID: 35988613 DOI: 10.1016/j.scitotenv.2022.158144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Ocean acidification (OA) resulting from the absorption of excess atmospheric CO2 by the ocean threatens the survival of marine calcareous organisms, including mollusks. This study investigated the effects of OA on adults of two abalone species (Haliotis diversicolor, a subtropical species, and Haliotis discus hannai, a temperate species). Abalone were exposed to three pCO2 conditions for 1 year (ambient, ~ 880, and ~ 1600 μatm), and parameters, including mortality, physiology, immune system, biochemistry, and carry-over effects, were measured. Survival decreased significantly at ~ 800 μatm pCO2 for H. diversicolor, while H. discus hannai survival was negatively affected only at a higher OA level (~ 1600 μatm pCO2). H. diversicolor exhibited depressed metabolic and excretion rates and a higher O:N ratio under OA, indicating a shift to lipids as a metabolism substrate, while these physiological parameters in H. discus hannai were robust to OA. Both abalone failed to compensate for the pH decrease of their internal fluids because of the lowered hemolymph pH under OA. However, the reduced hemolymph pH did not affect total hemocyte counts or tested biomarkers. Additionally, H. discus hannai increased its hemolymph protein content under OA, which could indicate enhanced immunity. Larvae produced by adults exposed to the three pCO2 levels were cultured in the same pCO2 conditions and larval deformation and shell length were measured to observe carry-over effects. Enhanced OA tolerance was observed for H. discus hannai exposed under both of the OA treatments, while that was only observed following parental pCO2 ~ 880 μatm exposure for H. diversicolor. Following pCO2 ~ 1600 μatm parental exposure, H. diversicolor offspring exhibited higher deformation and lower shell growth in all pCO2 treatments. In general, H. diversicolor were more susceptible to OA compared with H. discus hannai, suggesting that H. diversicolor could be unable to adapt to acidified oceans in the future.
Collapse
Affiliation(s)
- Xiaoyu Guo
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, PR China; XMU-MRB Abalone Research Center, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China; Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou 362000, PR China
| | - Miaoqin Huang
- XMU-MRB Abalone Research Center, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| | - Xuan Luo
- XMU-MRB Abalone Research Center, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| | - Weiwei You
- XMU-MRB Abalone Research Center, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| | - Caihuan Ke
- XMU-MRB Abalone Research Center, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
4
|
Kuan PL, You JY, Wu GC, Tseng YC. Temperature increases induce metabolic adjustments in the early developmental stages of bigfin reef squid (Sepioteuthis lessoniana). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:156962. [PMID: 35779738 DOI: 10.1016/j.scitotenv.2022.156962] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Climate changes, such as extreme temperature shifts, can have a direct and significant impact on animals living in the ocean system. Ectothermic animals may undergo concerted metabolic shifts in response to ambient temperature changes. The physiological and molecular adaptations in cephalopods during their early life stages are largely unknown due to the challenge of rearing them outside of a natural marine environment. To overcome this obstacle, we established a pelagic bigfin reef squid (Sepioteuthis lessoniana) culture facility, which allowed us to monitor the effects of ambient thermal elevation and fluctuation on cephalopod embryos/larvae. By carefully observing embryonic development in the breeding facility, we defined 23 stages of bigfin reef squid embryonic development, beginning at stage 12 (blastocyst; 72 h post-egg laying) and continuing through hatching (~1 month post-egg laying). Since temperature recordings from the bigfin reef squid natural habitats have shown a steady rise over the past decade, we examined energy substrate utilization and cellular/metabolic responses in developing animals under different temperature conditions. As the ambient temperature increased by 7 °C, hatching larvae favored aerobic metabolism by about 2.3-fold. Short-term environmental warming stress inhibited oxygen consumption but did not affect ammonium excretion in stage (St.) 25 larvae. Meanwhile, an aerobic metabolism-related marker (CoxI) and a cellular stress-responsive marker (HSP70) were rapidly up-regulated upon acute warming treatments. In addition, our simulations of temperature oscillations mimicking natural daily rhythms did not result in significant changes in metabolic processes in St. 25 animals. As the ambient temperature increased by 7 °C, referred to as heatwave conditions, CoxI, HSP70, and antioxidant molecule (SOD) were stimulated, indicating the importance of cellular and metabolic adjustments. As with other aquatic species with high metabolic rates, squid larvae in the tropical/sub-tropical climate zone undergo adaptive metabolic shifts to maintain physiological functions and prevent excessive oxidative stress under environmental warming.
Collapse
Affiliation(s)
- Pou-Long Kuan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Taiwan
| | - Jhih-Yao You
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Taiwan; Institute of Oceanography, National Taiwan University, Taiwan
| | - Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Yung-Che Tseng
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Taiwan.
| |
Collapse
|
5
|
Onthank KL, Trueblood LA, Schrock-Duff T, Kore LG. Impact of Short- and Long-Term Exposure to Elevated Seawater Pco2 on Metabolic Rate and Hypoxia Tolerance in Octopus rubescens. Physiol Biochem Zool 2021; 94:1-11. [DOI: 10.1086/712207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Moura É, Pimentel M, Santos CP, Sampaio E, Pegado MR, Lopes VM, Rosa R. Cuttlefish Early Development and Behavior Under Future High CO 2 Conditions. Front Physiol 2019; 10:975. [PMID: 31404314 PMCID: PMC6676914 DOI: 10.3389/fphys.2019.00975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/11/2019] [Indexed: 02/01/2023] Open
Abstract
The oceanic uptake of carbon dioxide (CO2) is increasing and changing the seawater chemistry, a phenomenon known as ocean acidification (OA). Besides the expected physiological impairments, there is an increasing evidence of detrimental OA effects on the behavioral ecology of certain marine taxa, including cephalopods. Within this context, the main goal of this study was to investigate, for the first time, the OA effects (∼1000 μatm; ΔpH = 0.4) in the development and behavioral ecology (namely shelter-seeking, hunting and response to a visual alarm cue) of the common cuttlefish (Sepia officinalis) early life stages, throughout the entire embryogenesis until 20 days after hatching. There was no evidence that OA conditions compromised the cuttlefish embryogenesis - namely development time, hatching success, survival rate and biometric data (length, weight and Fulton's condition index) of newly hatched cuttlefish were similar between the normocapnic and hypercapnic treatments. The present findings also suggest a certain behavioral resilience of the cuttlefish hatchlings toward near-future OA conditions. Shelter-seeking, hunting and response to a visual alarm cue did not show significant differences between treatments. Thus, we argue that cuttlefishes' nekton-benthic (and active) lifestyle, their adaptability to highly dynamic coastal and estuarine zones, and the already harsh conditions (hypoxia and hypercapnia) inside their eggs provide a degree of phenotypic plasticity that may favor the odds of the recruits in a future acidified ocean. Nonetheless, the interacting effects of multiple stressors should be further addressed, to accurately predict the resilience of this ecologically and economically important species in the oceans of tomorrow.
Collapse
Affiliation(s)
- Érica Moura
- MARE – Centro de Ciências do Mar e do Ambiente, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Cascais, Portugal
| | - Marta Pimentel
- MARE – Centro de Ciências do Mar e do Ambiente, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Cascais, Portugal
| | - Catarina P. Santos
- MARE – Centro de Ciências do Mar e do Ambiente, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Cascais, Portugal
| | - Eduardo Sampaio
- MARE – Centro de Ciências do Mar e do Ambiente, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Cascais, Portugal
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Maria Rita Pegado
- MARE – Centro de Ciências do Mar e do Ambiente, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Cascais, Portugal
| | - Vanessa Madeira Lopes
- MARE – Centro de Ciências do Mar e do Ambiente, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Cascais, Portugal
| | - Rui Rosa
- MARE – Centro de Ciências do Mar e do Ambiente, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Cascais, Portugal
| |
Collapse
|
7
|
Navarro MO, Kwan GT, Batalov O, Choi CY, Pierce NT, Levin LA. Development of Embryonic Market Squid, Doryteuthis opalescens, under Chronic Exposure to Low Environmental pH and [O2]. PLoS One 2016; 11:e0167461. [PMID: 27936085 PMCID: PMC5147904 DOI: 10.1371/journal.pone.0167461] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 11/15/2016] [Indexed: 11/18/2022] Open
Abstract
The market squid, Doryteuthis opalescens, is an important forage species for the inshore ecosystems of the California Current System. Due to increased upwelling and expansion of the oxygen minimum zone in the California Current Ecosystem, the inshore environment is expected to experience lower pH and [O2] conditions in the future, potentially impacting the development of seafloor-attached encapsulated embryos. To understand the consequences of this co-occurring environmental pH and [O2] stress for D. opalescens encapsulated embryos, we performed two laboratory experiments. In Experiment 1, embryo capsules were chronically exposed to a treatment of higher (normal) pH (7.93) and [O2] (242 μM) or a treatment of low pH (7.57) and [O2] (80 μM), characteristic of upwelling events and/or La Niña conditions. The low pH and low [O2] treatment extended embryo development duration by 5-7 days; embryos remained at less developed stages more often and had 54.7% smaller statolith area at a given embryo size. Importantly, the embryos that did develop to mature embryonic stages grew to sizes that were similar (non-distinct) to those exposed to the high pH and high [O2] treatment. In Experiment 2, we exposed encapsulated embryos to a single stressor, low pH (7.56) or low [O2] (85 μM), to understand the importance of environmental pH and [O2] rising and falling together for squid embryogenesis. Embryos in the low pH only treatment had smaller yolk reserves and bigger statoliths compared to those in low [O2] only treatment. These results suggest that D. opalescens developmental duration and statolith size are impacted by exposure to environmental [O2] and pH (pCO2) and provide insight into embryo resilience to these effects.
Collapse
Affiliation(s)
- Michael O. Navarro
- Integrative Oceanography Division, Scripps Institution of Oceanography, UCSD, La Jolla, California, United States of America
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, UCSD, La Jolla, California, United States of America
- * E-mail:
| | - Garfield T. Kwan
- Integrative Oceanography Division, Scripps Institution of Oceanography, UCSD, La Jolla, California, United States of America
- Marine Biology Research Division, Scripps Institution of Oceanography, UCSD, La Jolla, California, United States of America
| | - Olga Batalov
- Division of Biological Science, UCSD, La Jolla, California, United States of America
| | - Chelsea Y. Choi
- Integrative Oceanography Division, Scripps Institution of Oceanography, UCSD, La Jolla, California, United States of America
- Biology Department, University of Rochester, Rochester, New York, United States of America
| | - N. Tessa Pierce
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, UCSD, La Jolla, California, United States of America
- Marine Biology Research Division, Scripps Institution of Oceanography, UCSD, La Jolla, California, United States of America
| | - Lisa A. Levin
- Integrative Oceanography Division, Scripps Institution of Oceanography, UCSD, La Jolla, California, United States of America
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, UCSD, La Jolla, California, United States of America
| |
Collapse
|