1
|
Zhang H, Wang X, Dong M, Wang J, Ren W. Unveiling novel regulatory mechanisms of miR-5195-3p in pelvic organ prolapse pathogenesis†. Biol Reprod 2025; 112:86-101. [PMID: 39530351 DOI: 10.1093/biolre/ioae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/09/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024] Open
Abstract
Pelvic organ prolapse is a condition that significantly affects women's quality of life. The pathological mechanism of pelvic organ prolapse is not yet fully understood, and its pathogenesis is often caused by multiple factors, including the metabolic imbalance of the extracellular matrix. This study aims to investigate the role of miR-5195-3p, a microRNA, in the pathology of pelvic organ prolapse and its regulatory mechanism. Using various molecular biology techniques such as real-time reverse transcription Polymerase Chain Reaction (PCR), fluorescence in situ hybridization, immunohistochemistry, and Western blot, miR-5195-3p expression was examined in vaginal wall tissues obtained from pelvic organ prolapse patients. Results revealed an up-regulation of miR-5195-3p expression in these tissues, showing a negative correlation with the expression of extracellular matrix-related proteins. Further analysis using bioinformatics tools identified Lipoxygenase (LOX) as a potential target in pelvic organ prolapse. Dual luciferase reporter gene experiments confirmed LOX as a direct target of miR-5195-3p. Interestingly, regulating the expression of LOX also influenced the transforming growth factor β1 signaling pathway and had an impact on extracellular matrix metabolism. This finding suggests that miR-5195-3p controls extracellular matrix metabolism by targeting LOX and modulating the TGF-β1 signaling pathway. In conclusion, this study unveils the involvement of miR-5195-3p in the pathological mechanism of pelvic organ prolapse by regulating extracellular matrix metabolism through the LOX/TGF-β1 axis. These findings reveal new mechanisms in the pathogenesis of pelvic organ prolapse, providing a theoretical foundation and therapeutic targets for further research on pelvic organ prolapse treatment.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xinlu Wang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Meng Dong
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jie Wang
- Department of Health Management, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang 110004, China
| | - Weidong Ren
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
2
|
Takejima AL, Machado-Júnior PAB, Blume GG, Simeoni RB, Francisco JC, Tonial MS, Marqueze LFB, Noronha L, Olandoski M, Abdelwahid E, Carvalho KATDE, Pinho RA, Guarita-Souza LC. Bone-marrow mononuclear cells and acellular human amniotic membrane improve global cardiac function without inhibition of the NLRP3 Inflammasome in a rat model of heart failure. AN ACAD BRAS CIENC 2024; 96:e20230053. [PMID: 38451595 DOI: 10.1590/0001-3765202420230053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/19/2023] [Indexed: 03/08/2024] Open
Abstract
Recent studies have suggested that therapies with stem cells and amniotic membrane can modulate the inflammation following an ischemic injury in the heart. This study evaluated the effects of bone-marrow mononuclear cells (BMMC) and acellular human amniotic membrane (AHAM) on cardiac function and NLRP3 complex in a rat model of heart failure.On the 30th day,the echocardiographic showed improvements on ejection fraction and decreased pathological ventricular remodeling on BMMC and AHAM groups.Oxidative stress analysis was similar between the three groups,and the NLRP3 inflammasome activity were not decreased with the therapeutic use of both BMMC and AHAM,in comparison to the control group.
Collapse
Affiliation(s)
- Aline L Takejima
- Pontifícia Universidade Católica do Paraná (PUCPR), Experimental Laboratory of Institute of Biological and Health Sciences, 1555 Imaculada Conceição Street, 80215-901 Curitiba, PR, Brazil
| | - Paulo André B Machado-Júnior
- Pontifícia Universidade Católica do Paraná (PUCPR), Experimental Laboratory of Institute of Biological and Health Sciences, 1555 Imaculada Conceição Street, 80215-901 Curitiba, PR, Brazil
| | - Gustavo G Blume
- Pontifícia Universidade Católica do Paraná (PUCPR), Experimental Laboratory of Institute of Biological and Health Sciences, 1555 Imaculada Conceição Street, 80215-901 Curitiba, PR, Brazil
| | - Rossana Baggio Simeoni
- Pontifícia Universidade Católica do Paraná (PUCPR), Experimental Laboratory of Institute of Biological and Health Sciences, 1555 Imaculada Conceição Street, 80215-901 Curitiba, PR, Brazil
| | - Julio Cesar Francisco
- Pontifícia Universidade Católica do Paraná (PUCPR), Experimental Laboratory of Institute of Biological and Health Sciences, 1555 Imaculada Conceição Street, 80215-901 Curitiba, PR, Brazil
| | - Murilo S Tonial
- Pontifícia Universidade Católica do Paraná (PUCPR), Experimental Laboratory of Institute of Biological and Health Sciences, 1555 Imaculada Conceição Street, 80215-901 Curitiba, PR, Brazil
| | - Luis Felipe B Marqueze
- Pontifícia Universidade Católica do Paraná (PUCPR), Laboratory of Exercise Biochemistry in Health, School of Medicine, 1555 Imaculada Conceição Street, Prado Velho, 80215-901 Curitiba, PR, Brazil
| | - Lucia Noronha
- Pontifícia Universidade Católica do Paraná (PUCPR), Experimental Laboratory of Institute of Biological and Health Sciences, 1555 Imaculada Conceição Street, 80215-901 Curitiba, PR, Brazil
| | - Marcia Olandoski
- Pontifícia Universidade Católica do Paraná (PUCPR), Experimental Laboratory of Institute of Biological and Health Sciences, 1555 Imaculada Conceição Street, 80215-901 Curitiba, PR, Brazil
| | - Eltyeb Abdelwahid
- Northwestern University, Feinberg School of Medicine, Feinberg Cardiovascular Research Institute, 303 E. Chicago Ave., Tarry 14-725, 60611 Chicago, IL, USA
| | - Katherine A T DE Carvalho
- The Pelé Pequeno Príncipe Institute, Cell Therapy and Biotechnology in Regenerative Medicine Department, Child and Adolescent Health Research & Pequeno Príncipe Faculties, 1632 Silva Jardim Ave., Água Verde, 80240-020 Curitiba, PR, Brazil
| | - Ricardo A Pinho
- Pontifícia Universidade Católica do Paraná (PUCPR), Laboratory of Exercise Biochemistry in Health, School of Medicine, 1555 Imaculada Conceição Street, Prado Velho, 80215-901 Curitiba, PR, Brazil
| | - Luiz César Guarita-Souza
- Pontifícia Universidade Católica do Paraná (PUCPR), Experimental Laboratory of Institute of Biological and Health Sciences, 1555 Imaculada Conceição Street, 80215-901 Curitiba, PR, Brazil
| |
Collapse
|
3
|
de Souza IC, Takejima AL, Simeoni RB, Gamba LK, Ribeiro VST, Foltz KM, de Noronha L, de Almeida MB, Neto JRF, de Carvalho KAT, da Silveira PCL, Pinho RA, Francisco JC, Guarita-Souza LC. Acellular Biomaterials Associated with Autologous Bone Marrow-Derived Mononuclear Stem Cells Improve Wound Healing through Paracrine Effects. Biomedicines 2023; 11:biomedicines11041003. [PMID: 37189621 DOI: 10.3390/biomedicines11041003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/14/2023] [Indexed: 05/17/2023] Open
Abstract
Wound healing is a complex process of repair that involves the interaction between different cell types and involves coordinated interactions between intracellular and extracellular signaling. Bone Marrow Mesenchymal Stem Cells (BMSCs) based and acellular amniotic membrane (AM) therapeutic strategies with the potential for treatment and regeneration of tissue. We aimed to evaluate the involvement of paracrine effects in tissue repair after the flap skin lesion rat model. In the full-thickness flap skin experiment of forty Wistar rats: A total of 40 male Wistar rats were randomized into four groups: group I: control (C; n = 10), with full-thickness lesions on the back, without (BMSCs) or AM (n = 10); group II: injected (BMSCs; n = 10); group III: covered by AM; group IV-injected (AM + BMSCs; n = 10). Cytokine levels, IL-1, and IL-10 assay kits, superoxide dismutase (SOD), glutathione reductase (GRs) and carbonyl activity levels were measured by ELISA 28th day, and TGF-β was evaluated by immunohistochemical, the expression collagen expression was evaluated by Picrosirius staining. Our results showed that the IL-1 interleukin was higher in the control group, and the IL-10 presented a higher mean when compared to the control group. The groups with BMSCs and AM showed the lowest expression levels of TGF-β. SOD, GRs, and carbonyl activity analysis showed a predominance in groups that received treatment from 80%. The collagen fiber type I was predominant in all groups; however, the AM + BMSCs group obtained a higher average when compared to the control group. Our findings suggest that the AM+ BMSCs promote skin wound healing, probably owing to their paracrine effect attributed to the promotion of new collagen for tissue repair.
Collapse
Affiliation(s)
- Isio Carvalho de Souza
- Experimental Laboratory of Institute of Biological and Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), 1555 Imaculada Conceição Street, Curitiba 80215-901, SP, Brazil
| | - Aline Luri Takejima
- Experimental Laboratory of Institute of Biological and Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), 1555 Imaculada Conceição Street, Curitiba 80215-901, SP, Brazil
| | - Rossana Baggio Simeoni
- Experimental Laboratory of Institute of Biological and Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), 1555 Imaculada Conceição Street, Curitiba 80215-901, SP, Brazil
| | - Luize Kremer Gamba
- Experimental Laboratory of Institute of Biological and Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), 1555 Imaculada Conceição Street, Curitiba 80215-901, SP, Brazil
| | - Victoria Stadler Tasca Ribeiro
- Experimental Laboratory of Institute of Biological and Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), 1555 Imaculada Conceição Street, Curitiba 80215-901, SP, Brazil
| | - Katia Martins Foltz
- Experimental Laboratory of Institute of Biological and Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), 1555 Imaculada Conceição Street, Curitiba 80215-901, SP, Brazil
| | - Lucia de Noronha
- Experimental Laboratory of Institute of Biological and Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), 1555 Imaculada Conceição Street, Curitiba 80215-901, SP, Brazil
| | - Meila Bastos de Almeida
- Department of Veterinary Medicine, Universidade Federal do Paraná (UFPR), Rua XV de Novembro, 1299, Curitiba 80060-000, SP, Brazil
| | - Jose Rocha Faria Neto
- Experimental Laboratory of Institute of Biological and Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), 1555 Imaculada Conceição Street, Curitiba 80215-901, SP, Brazil
| | - Katherine Athayde Teixeira de Carvalho
- Cell Therapy and Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, 1632 Silva Jardim Avenue, Curitiba 80240-902, SP, Brazil
| | - Paulo Cesar Lock da Silveira
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, SC, Brazil
| | - Ricardo Aurino Pinho
- Laboratory of Exercise Biochemistry in Health, School of Medicine, Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), 1555 Imaculada Conceição Street, Curitiba 80215-901, SP, Brazil
| | - Julio Cesar Francisco
- Experimental Laboratory of Institute of Biological and Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), 1555 Imaculada Conceição Street, Curitiba 80215-901, SP, Brazil
| | - Luiz César Guarita-Souza
- Experimental Laboratory of Institute of Biological and Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), 1555 Imaculada Conceição Street, Curitiba 80215-901, SP, Brazil
| |
Collapse
|