1
|
Controls of Central and Peripheral Blood Pressure and Hemorrhagic/Hypovolemic Shock. J Clin Med 2023; 12:jcm12031108. [PMID: 36769755 PMCID: PMC9917827 DOI: 10.3390/jcm12031108] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
The pressure exerted on the heart and blood vessels because of blood flow is considered an essential parameter for cardiovascular function. It determines sufficient blood perfusion, and transportation of nutrition, oxygen, and other essential factors to every organ. Pressure in the primary arteries near the heart and the brain is known as central blood pressure (CBP), while that in the peripheral arteries is known as peripheral blood pressure (PBP). Usually, CBP and PBP are correlated; however, various types of shocks and cardiovascular disorders interfere with their regulation and differently affect the blood flow in vital and accessory organs. Therefore, understanding blood pressure in normal and disease conditions is essential for managing shock-related cardiovascular implications and improving treatment outcomes. In this review, we have described the control systems (neural, hormonal, osmotic, and cellular) of blood pressure and their regulation in hemorrhagic/hypovolemic shock using centhaquine (Lyfaquin®) as a resuscitative agent.
Collapse
|
2
|
Jiang W, Wu Z, Gao Z, Wan M, Zhou M, Mao C, Shen J. Artificial Cells: Past, Present and Future. ACS NANO 2022; 16:15705-15733. [PMID: 36226996 DOI: 10.1021/acsnano.2c06104] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Artificial cells are constructed to imitate natural cells and allow researchers to explore biological process and the origin of life. The construction methods for artificial cells, through both top-down or bottom-up approaches, have achieved great progress over the past decades. Here we present a comprehensive overview on the development of artificial cells and their properties and applications. Artificial cells are derived from lipids, polymers, lipid/polymer hybrids, natural cell membranes, colloidosome, metal-organic frameworks and coacervates. They can be endowed with various functions through the incorporation of proteins and genes on the cell surface or encapsulated inside of the cells. These modulations determine the properties of artificial cells, including producing energy, cell growth, morphology change, division, transmembrane transport, environmental response, motility and chemotaxis. Multiple applications of these artificial cells are discussed here with a focus on therapeutic applications. Artificial cells are used as carriers for materials and information exchange and have been shown to function as targeted delivery systems of personalized drugs. Additionally, artificial cells can function to substitute for cells with impaired function. Enzyme therapy and immunotherapy using artificial cells have been an intense focus of research. Finally, prospects of future development of cell-mimic properties and broader applications are highlighted.
Collapse
Affiliation(s)
- Wentao Jiang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Ziyu Wu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Zheng Gao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
3
|
Mark N, Lyubin A, Gerasi R, Ofir D, Tsur AM, Chen J, Bader T. Comparison of the Effects of Motion and Environment Conditions on Accuracy of Handheld and Finger-Based Pulse Oximeters. Mil Med 2021; 186:465-472. [PMID: 33499470 DOI: 10.1093/milmed/usaa314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/23/2020] [Accepted: 09/14/2020] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION The most common cause of preventable death on the battlefield is significant blood loss, eventually causing decrease in tissue oxygen delivery. Pulse oximeters (POs) are widely used by the Israeli Defense Forces to obtain fast and noninvasive information about peripheral oxygen saturation (SpO2). However, POs are produced by different manufacturers and therefore include different sensors and are based on distinctive algorithms. This makes them susceptible to different errors caused by factors varying from environmental conditions to the severity of injury. The objectives of this study were to compare the reliability of different devices and their accuracy under various conditions. MATERIAL AND METHODS Six POs underwent performance analysis. The finger-based category included: MightySat by Masimo, Onyx II by Nonin, and CMS50D by Contec. The handheld category comprised: RAD5 by Masimo, 9847 model by Nonin, and 3301 model by BCI. Several environmental and physiological parameters were altered using the ProSim8 simulator by Fluke biomedical, forming unique test cases under which the devices were tested in stationary and motion conditions. RESULTS All finger-based POs showed higher error rates of PO SpO2 and heart rate measurements in motion conditions, regardless of the manufacturer. However, newer devices in the handheld category were not affected. Results presented in Phase II showed that the SpO2 measurement error in all the devices was affected by pigmentation. However, the CMS50D, considered a low-cost device, had a significantly higher error size than other devices. In the devices that were influenced both by pigmentation and the finger cleanliness factors, the combined detected error size was clinically significant. The pigmentation, ambient light, and finger cleanliness also had a significant effect on the heart rate measurement in the CMS50D model, unlike the handheld devices, which were not affected. During Phase II, neither the Nonin nor the Masimo devices were deemed to have a significant advantage. CONCLUSION Considering measurement limitations of POs used is extremely important. Use of handheld devices should be favored for use in motion conditions. Technologically advanced and/or recently developed devices should be preferred because of evolving algorithms, which decrease or eliminate the error factors. The "dirty finger" effect on the measurement error cannot be neglected and therefore the action of finger cleaning should be considered part of the treatment protocol.
Collapse
Affiliation(s)
- Noy Mark
- Surgeon General's Headquarters, Israel Defense Forces Medical Corps, Military POB 02149, Tel Hashomer, Ramat Gan, Israel, Military Postal Code 01215
| | - Anat Lyubin
- Surgeon General's Headquarters, Israel Defense Forces Medical Corps, Military POB 02149, Tel Hashomer, Ramat Gan, Israel, Military Postal Code 01215
| | - Refael Gerasi
- Surgeon General's Headquarters, Israel Defense Forces Medical Corps, Military POB 02149, Tel Hashomer, Ramat Gan, Israel, Military Postal Code 01215
| | - Dror Ofir
- Israel Naval Medical Institute, Israel Defense Forces Medical Corps, Box 22, Rambam Health Care Campus, POB 9602, Haifa, Israel, Postal Code 3109601
| | - Avishai M Tsur
- Surgeon General's Headquarters, Israel Defense Forces Medical Corps, Military POB 02149, Tel Hashomer, Ramat Gan, Israel, Military Postal Code 01215
| | - Jacob Chen
- Surgeon General's Headquarters, Israel Defense Forces Medical Corps, Military POB 02149, Tel Hashomer, Ramat Gan, Israel, Military Postal Code 01215
| | - Tarif Bader
- Surgeon General's Headquarters, Israel Defense Forces Medical Corps, Military POB 02149, Tel Hashomer, Ramat Gan, Israel, Military Postal Code 01215.,Faculty of Medicine, Institute for Research in Military Medicine, The Hebrew University of Jerusalem and Israel Defense Forces Medical Corps, POB 12272, Jerusalem, Israel, Postal Code 9112102
| |
Collapse
|
4
|
Zhu W, Liu F, Wang L, Yang B, Bai Y, Huang Y, Li Y, Li W, Yuan Y, Chen C, Zhu H. pPolyHb protects myocardial H9C2 cells against ischemia-reperfusion injury by regulating the Pink1-Parkin-mediated mitochondrial autophagy pathway. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1248-1255. [DOI: 10.1080/21691401.2019.1594243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Wenjin Zhu
- The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, P. R. China
| | - Fang Liu
- The Productive Medicine Center, Tangdu Hospital, Air Force Military Medical University, Xi’an, P. R. China
| | - Li Wang
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi’an, P. R. China
| | - Bo Yang
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi’an, P. R. China
| | - Yuwei Bai
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi’an, P. R. China
| | - Yanzhi Huang
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi’an, P. R. China
| | - Yaru Li
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi’an, P. R. China
| | - Wei Li
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi’an, P. R. China
| | - Yuemin Yuan
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi’an, P. R. China
| | - Chao Chen
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi’an, P. R. China
| | - Hongli Zhu
- National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi’an, P. R. China
| |
Collapse
|
5
|
Chang TMS. ARTIFICIAL CELL evolves into nanomedicine, biotherapeutics, blood substitutes, drug delivery, enzyme/gene therapy, cancer therapy, cell/stem cell therapy, nanoparticles, liposomes, bioencapsulation, replicating synthetic cells, cell encapsulation/scaffold, biosorbent/immunosorbent haemoperfusion/plasmapheresis, regenerative medicine, encapsulated microbe, nanobiotechnology, nanotechnology. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:997-1013. [DOI: 10.1080/21691401.2019.1577885] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Thomas Ming Swi Chang
- Artificial Cells and Organs Research Centre, Departments of Physiology, Medicine and Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Guo C, Chang TMS. Long term safety and immunological effects of a nanobiotherapeutic, bovine poly-[hemoglobin-catalase-superoxide dismutase-carbonic anhydrase], after four weekly 5% blood volume top-loading followed by a challenge of 30% exchange transfusion. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:1349-1363. [DOI: 10.1080/21691401.2018.1476375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Chen Guo
- Artficial Cells and Organs Research Centre, Departments of Physiology, Medicine and Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Thomas Ming Swi Chang
- Artficial Cells and Organs Research Centre, Departments of Physiology, Medicine and Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Zhao J, Yan C, Xu L, Yan K, Feng B, Zhao M, Niu G, Wu M, Chen C, Zhu H. The effect of pPolyHb on hemodynamic stability and mesenteric microcirculation in a rat model of hemorrhagic shock. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 45:677-685. [PMID: 28129711 DOI: 10.1080/21691401.2017.1282869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The effects of polymerized porcine hemoglobin (pPolyHb) on hemodynamic stability and maintenance of mesenteric microvascular function were explored in a rat model of hemorrhagic shock (HS). Following controlled hemorrhage, rats were infused with equal volumes of either pPolyHb, hetastarch (HES), or red blood cell (RBC). The results showed that pPolyHb was superior to HES and RBC in restoring hemodynamic stability and reversing anaerobic metabolism. We observed a reduction in the diameter of mesenteric microvasculature after HS. Resuscitation with pPolyHb and RBC was able to restore the diameters of the venules and arterioles, whereas HES failed to restore the diameters during the observation period.
Collapse
Affiliation(s)
- Jing Zhao
- a College of Life Science, Northwest University , Xi'an , P. R. China.,d Department of Anesthesiology , Xijing Hospital, Fourth Military Medical University , Xi'an , P. R. China
| | - Chengbin Yan
- a College of Life Science, Northwest University , Xi'an , P. R. China
| | - Lijuan Xu
- a College of Life Science, Northwest University , Xi'an , P. R. China
| | - Kunping Yan
- a College of Life Science, Northwest University , Xi'an , P. R. China
| | - Bao Feng
- c Shaanxi Lifegen Co. Ltd , Xi'an , P. R. China
| | - Mengye Zhao
- a College of Life Science, Northwest University , Xi'an , P. R. China
| | - Geng Niu
- a College of Life Science, Northwest University , Xi'an , P. R. China
| | - Mengdi Wu
- a College of Life Science, Northwest University , Xi'an , P. R. China
| | - Chao Chen
- a College of Life Science, Northwest University , Xi'an , P. R. China.,b National Engineering Research Center for Miniaturized Detection Systems, Northwest University , Xi'an , P. R. China
| | - Hongli Zhu
- a College of Life Science, Northwest University , Xi'an , P. R. China.,b National Engineering Research Center for Miniaturized Detection Systems, Northwest University , Xi'an , P. R. China
| |
Collapse
|