1
|
Alabrahim OAA, Azzazy HMES. Synergistic anticancer effect of Pistacia lentiscus essential oils and 5-Fluorouracil co-loaded onto biodegradable nanofibers against melanoma and breast cancer. DISCOVER NANO 2024; 19:27. [PMID: 38353827 PMCID: PMC10866856 DOI: 10.1186/s11671-024-03962-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/17/2024]
Abstract
Chemoresistance and severe toxicities represent major drawbacks of chemotherapy. Natural extracts, including the essential oils of Pistacia lentiscus (PLEO), exhibit substantial anticancer and anti-inflammatory activities where different cancers are reported to dramatically recess following targeting with PLEO. PLEO has promising antimicrobial, anticancer, and anti-inflammatory properties. However, the therapeutic properties of PLEO are restricted by limited stability, bioavailability, and targeting ability. PLEO nanoformulation can maximize their physicochemical and therapeutic properties, overcoming their shortcomings. Hence, PLEO was extracted and its chemical composition was determined by GC-MS. PLEO and 5-Fluorouracil (5FU) were electrospun into poly-ε-caprolactone nanofibers (PCL-NFs), of 290.71 nm to 680.95 nm diameter, to investigate their anticancer and potential synergistic activities against triple-negative breast cancer cells (MDA-MB-231), human adenocarcinoma breast cancer cells (MCF-7), and human skin melanoma cell line (A375). The prepared nanofibers (NFs) showed enhanced thermal stability and remarkable physical integrity and tensile strength. Biodegradability studies showed prolonged stability over 42 days, supporting the NFs use as a localized therapy of breast tissues (postmastectomy) or melanoma. Release studies revealed sustainable release behaviors over 168 h, with higher released amounts of 5FU and PLEO at pH 5.4, indicating higher targeting abilities towards cancer tissues. NFs loaded with PLEO showed strong antioxidant properties. Finally, NFs loaded with either PLEO or 5FU depicted greater anticancer activities compared to free compounds. The highest anticancer activities were observed with NFs co-loaded with PLEO and 5FU. The developed 5FU-PLEO-PCL-NFs hold potential as a local treatment of breast cancer tissues (post-mastectomy) and melanoma to minimize their possible recurrence.
Collapse
Affiliation(s)
- Obaydah Abd Alkader Alabrahim
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, SSE # 1184, P.O. Box 74, New Cairo, 11835, Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, SSE # 1184, P.O. Box 74, New Cairo, 11835, Egypt.
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology, Albert Einstein Str. 9, Jena, Germany.
| |
Collapse
|
2
|
Lingling C, Hao W, Fuqiang Y, Chao G, Honglin D, Xiaojie S, Yang Z, Jiaxin Z, Lihong S, Hongmin L, Qiurong Z. Design, Synthesis and Antitumor Activity Evaluation of Trifluoromethyl-Containing Polysubstituted Pyrimidine Derivatives. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162023010168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
5-Fluorouracil-Immobilized Hyaluronic Acid Hydrogel Arrays on an Electrospun Bilayer Membrane as a Drug Patch. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120742. [PMID: 36550948 PMCID: PMC9774285 DOI: 10.3390/bioengineering9120742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
The hyaluronic acid (HA) hydrogel array was employed for immobilization of 5-fluorouracil (5-FU), and the electrospun bilayer (hydrophilic: polyurethane/pluronic F-127 and hydrophobic: polyurethane) membrane was used to support the HA hydrogel array as a patch. To visualize the drug propagating phenomenon into tissues, we experimentally investigated how FITC-BSA diffused into the tissue by applying hydrogel patches to porcine tissue samples. The diffusive phenomenon basically depends on the FITC-BSA diffusion coefficient in the hydrogel, and the degree of diffusion of FITC-BSA may be affected by the concentration of HA hydrogel, which demonstrates that the high density of HA hydrogel inhibits the diffusive FITC-BSA migration toward the low concentration region. YD-10B cells were employed to investigate the release of 5-FU from the HA array on the bilayer membrane. In the control group, YD-10B cell viability was over 98% after 3 days. However, in the 5-FU-immobilized HA hydrogel array, most of the YD-10B cells were not attached to the bilayer membrane used as a scaffold. These results suggest that 5-FU was locally released and initiated the death of the YD-10B cells. Our results show that 5-FU immobilized on HA arrays significantly reduces YD-10B cell adhesion and proliferation, affecting cells even early in the cell culture. Our results suggest that when 5-FU is immobilized in the HA hydrogel array on the bilayer membrane as a drug patch, it is possible to control the drug concentration, to release it continuously, and that the patch can be applied locally to the targeted tumor site and administer the drug in a time-stable manner. Therefore, the developed bilayer membrane-based HA hydrogel array patch can be considered for sustained release of the drug in biomedical applications.
Collapse
|
4
|
Synthesis and Characterization of a Novel Dual-Responsive Nanogel for Anticancer Drug Delivery. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1548410. [PMID: 36193087 PMCID: PMC9526620 DOI: 10.1155/2022/1548410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022]
Abstract
In this study, to reduce the side effects of anticancer drugs and also to increase the efficiency of current drug delivery systems, a pH and temperature-responsive polymeric nanogel was synthesized by copolymerization of N-vinylcaprolactam (VCL) and acrylic acid (AA) monomers (P(VCL-co-AA)) with a novel cross-linker, triethylene glycol dimethacrylate (TEGDMA), as a biocompatible and nontoxic component. The structural and physicochemical features of the P(VCL-co-AA) nanogel were characterized by FT-IR, DLS/Zeta potential, FE-SEM, and 1HNMR techniques. The results indicated that spherical polymeric nanogel was successfully synthesized with a 182 nm diameter. The results showed that the polymerization process continues with the opening of the carbon-carbon double bond of monomers, which was approved by C-C band removing located at 1600 cm-1. Doxorubicin (Dox) as a chemotherapeutic agent was loaded into the P(VCL-co-AA), whit a significant loading of Dox (83%), and the drug release profile was investigated in the physiological and cancerous site simulated conditions. P(VCL-co-AA) exhibited a pH and temperature-responsive behavior, with an enhanced release rate in the cancerous site condition. The biocompatibility and nontoxicity of P(VCL-co-AA) were approved by MTT assay on the normal human foreskin fibroblasts-2 (HFF-2) cell line. Also, Dox-loaded P(VCL-co-AA) had excellent toxic behavior on the Michigan Cancer Foundation-7 (MCF-7) cell line as model cancerous cells. Moreover, Dox-loaded P(VCL-co-AA) had higher toxicity in comparison with free Dox, which would be a vast advantage in reducing Dox side effects in the clinical cancer treatment applications.
Collapse
|
5
|
Kumar D, Gautam A, Kundu PP. Synthesis of
pH
‐sensitive grafted psyllium: Encapsulation of quercetin for colon cancer treatment. J Appl Polym Sci 2022. [DOI: 10.1002/app.51552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Deepak Kumar
- Department of Chemical Engineering Indian Institute of Technology Roorkee India
| | - Arti Gautam
- Department of Biochemistry Institute of Science Banaras Hindu University Varanasi India
| | - Patit Paban Kundu
- Department of Chemical Engineering Indian Institute of Technology Roorkee India
| |
Collapse
|
6
|
Bhavin SE, Anuradha G. Nanosponge Approach -A Plethora of Opportunities as a Promising Nanocarrier for Novel Drug Delivery. RECENT PATENTS ON NANOTECHNOLOGY 2022; 16:271-282. [PMID: 34303335 DOI: 10.2174/1872210515666210720141736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/21/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Nanotechnology is the need of the hour! The design of nanotechnologyaided carriers as a tool for the delivery of low solubility molecules offers a potential platform to overcome the issues of current clinical treatment and achieve good targeted release and bioaccessibility. OBJECTIVE Nanosponges (NS) encapsulate types of nanocarriers capable of carrying both lipophilic and hydrophilic substances. They are synthesized by mixing a solution of polyester, which is biodegradable, with cross-linkers. These tiny, porous structures are round-shaped, having multiple cavities wherein drugs can be housed to offer programmable release. METHODS The detailed literature review and patent search summarize the ongoing research on NS. Substances such as poorly soluble drugs, nutraceuticals, gases, proteins and peptides, volatile oils, genetic material, etc., can be loaded on these novel carriers, which are characterized using various analytical techniques. Target-specific drug delivery and controlled drug release are the advantages offered by NS, along with a myriad of other promising applications. RESULTS This review stresses the development of cyclodextrin-based NS, the synthetic methods and characterization of NS, along with factors affecting NS formation, their applications and information on the patented work in this area. NS are solid in character and can be formulated in various dosage forms, such as parenteral, topical, oral or inhalation. CONCLUSION Therefore, owing to their promising benefits over other nanocarriers in terms of drug loading, adaptability, sustainability, solubility and tailored release profile, NS is an immediate technological revolution for drug entrapment and as novel drug carriers.The authors expect that these fundamental applications of NS could help the researchers to develop and gain insight about NS in novel drug delivery applications.
Collapse
Affiliation(s)
- Shah Esha Bhavin
- Babaria Institute of Pharmacy, BITS Edu Campus, Vadodara, Gujarat, India and Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat. India
| | | |
Collapse
|
7
|
Safwat S, Hathout RM, Ishak RA, Mortada ND. Elaborated survey in the scope of nanocarriers engineering for boosting chemotherapy cytotoxicity: A meta-analysis study. Int J Pharm 2021; 610:121268. [PMID: 34748812 DOI: 10.1016/j.ijpharm.2021.121268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/24/2021] [Accepted: 11/01/2021] [Indexed: 02/02/2023]
Abstract
Cancer is the prime cause of mortality throughout the world. Although the conventional chemotherapeutic agents damage the cancerous cells, they exert prominent injury to the normal cells owing to their lack of specificity. With advances in science, many research studies have been established to boost the cytotoxic effect of the chemotherapeutic agents via innovating novel nano-formulations having different variables. In the current meta-analysis study, combined data from different research articles were gathered for the evidence-based proof of the superiority of drug loaded nanocarriers over their corresponding conventional solutions in boosting the cytotoxic effect of chemotherapy in terms of IC50 values. The meta-analysis was subdivided into three subgroups; nanoparticles versus nanofibers, surface functionalized nanocarriers versus naked ones, and protein versus non-protein-based platforms. The different subgroups interestingly showed distinct scoring outcome data paving the road for cytotoxicity enhancement of the anti-cancer drugs in an evidence-based manner.
Collapse
Affiliation(s)
- Sally Safwat
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt.
| | - Rania A Ishak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt
| | - Nahed D Mortada
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt
| |
Collapse
|
8
|
Manisekaran R, García-Contreras R, Rasu Chettiar AD, Serrano-Díaz P, Lopez-Ayuso CA, Arenas-Arrocena MC, Hernández-Padrón G, López-Marín LM, Acosta-Torres LS. 2D Nanosheets-A New Class of Therapeutic Formulations against Cancer. Pharmaceutics 2021; 13:1803. [PMID: 34834218 PMCID: PMC8620729 DOI: 10.3390/pharmaceutics13111803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/14/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022] Open
Abstract
Researchers in cancer nanomedicine are exploring a revolutionary multifaceted carrier for treatment and diagnosis, resulting in the proposal of various drug cargos or "magic bullets" in this past decade. Even though different nano-based complexes are registered for clinical trials, very few products enter the final stages each year because of various issues. This prevents the formulations from entering the market and being accessible to patients. In the search for novel materials, the exploitation of 2D nanosheets, including but not limited to the highly acclaimed graphene, has created extensive interest for biomedical applications. A unique set of properties often characterize 2D materials, including semiconductivity, high surface area, and their chemical nature, which allow simple decoration and functionalization procedures, structures with high stability and targeting properties, vectors for controlled and sustained release of drugs, and materials for thermal-based therapies. This review discusses the challenges and opportunities of recently discovered 2D nanosheets for cancer therapeutics, with special attention paid to the most promising design technologies and their potential for clinical translation in the future.
Collapse
Affiliation(s)
- Ravichandran Manisekaran
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Boulevard UNAM No. 2011, Predio El Saucillo y El Potrero, Guanajuato 37689, Mexico; (R.G.-C.); (P.S.-D.); (C.A.L.-A.); (M.C.A.-A.)
| | - René García-Contreras
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Boulevard UNAM No. 2011, Predio El Saucillo y El Potrero, Guanajuato 37689, Mexico; (R.G.-C.); (P.S.-D.); (C.A.L.-A.); (M.C.A.-A.)
| | - Aruna-Devi Rasu Chettiar
- Facultad de Química, Materiales-Energía, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Mexico;
| | - Paloma Serrano-Díaz
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Boulevard UNAM No. 2011, Predio El Saucillo y El Potrero, Guanajuato 37689, Mexico; (R.G.-C.); (P.S.-D.); (C.A.L.-A.); (M.C.A.-A.)
| | - Christian Andrea Lopez-Ayuso
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Boulevard UNAM No. 2011, Predio El Saucillo y El Potrero, Guanajuato 37689, Mexico; (R.G.-C.); (P.S.-D.); (C.A.L.-A.); (M.C.A.-A.)
| | - Ma Concepción Arenas-Arrocena
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Boulevard UNAM No. 2011, Predio El Saucillo y El Potrero, Guanajuato 37689, Mexico; (R.G.-C.); (P.S.-D.); (C.A.L.-A.); (M.C.A.-A.)
| | - Genoveva Hernández-Padrón
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Juriquilla 76230, Mexico; (G.H.-P.); (L.M.L.-M.)
| | - Luz M. López-Marín
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Juriquilla 76230, Mexico; (G.H.-P.); (L.M.L.-M.)
| | - Laura Susana Acosta-Torres
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Boulevard UNAM No. 2011, Predio El Saucillo y El Potrero, Guanajuato 37689, Mexico; (R.G.-C.); (P.S.-D.); (C.A.L.-A.); (M.C.A.-A.)
| |
Collapse
|
9
|
Yayehrad AT, Siraj EA, Wondie GB, Alemie AA, Derseh MT, Ambaye AS. Could Nanotechnology Help to End the Fight Against COVID-19? Review of Current Findings, Challenges and Future Perspectives. Int J Nanomedicine 2021; 16:5713-5743. [PMID: 34465991 PMCID: PMC8402990 DOI: 10.2147/ijn.s327334] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/29/2021] [Indexed: 12/21/2022] Open
Abstract
A serious viral infectious disease was introduced to the globe by the end of 2019 that was seen primarily from China, but spread worldwide in a few months to be a pandemic. Since then, accurate prevention, early detection, and effective treatment strategies are not yet outlined. There is no approved drug to counter its worldwide transmission. However, integration of nanostructured delivery systems with the current management strategies has promised a pronounced opportunity to tackle the pandemic. This review addressed the various promising nanotechnology-based approaches for the diagnosis, prevention, and treatment of the pandemic. The pharmaceutical, pharmacoeconomic, and regulatory aspects of these systems with currently achieved or predicted beneficial outcomes, challenges, and future perspectives are also highlighted.
Collapse
Affiliation(s)
- Ashagrachew Tewabe Yayehrad
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Pharmacy, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Ebrahim Abdela Siraj
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Pharmacy, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Gebremariam Birhanu Wondie
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Atlaw Abate Alemie
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Ethiopian Food and Drug Authority (EFDA), Federal Ministry of Health (FMoH), Addis Ababa, Ethiopia
| | - Manaye Tamrie Derseh
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Departement of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Aman, Ethiopia
| | - Abyou Seyfu Ambaye
- Departement of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Aman, Ethiopia
| |
Collapse
|
10
|
Calycosin-triblock copolymer nanomicelles attenuate doxorubicin-induced cardiotoxicity through upregulation of ERp57. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
11
|
Yang TC, Liu SJ, Lo WL, Chen SM, Tang YL, Tseng YY. Enhanced Anti-Tumor Activity in Mice with Temozolomide-Resistant Human Glioblastoma Cell Line-Derived Xenograft Using SN-38-Incorporated Polymeric Microparticle. Int J Mol Sci 2021; 22:ijms22115557. [PMID: 34074038 PMCID: PMC8197307 DOI: 10.3390/ijms22115557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) has remained one of the most lethal and challenging cancers to treat. Previous studies have shown encouraging results when irinotecan was used in combination with temozolomide (TMZ) for treating GBM. However, irinotecan has a narrow therapeutic index: a slight dose increase in irinotecan can induce toxicities that outweigh its therapeutic benefits. SN-38 is the active metabolite of irinotecan that accounts for both its anti-tumor efficacy and toxicity. In our previous paper, we showed that SN-38 embedded into 50:50 biodegradable poly[(d,l)-lactide-co-glycolide] (PLGA) microparticles (SMPs) provides an efficient delivery and sustained release of SN-38 from SMPs in the brain tissues of rats. These properties of SMPs give them potential for therapeutic application due to their high efficacy and low toxicity. In this study, we tested the anti-tumor activity of SMP-based interstitial chemotherapy combined with TMZ using TMZ-resistant human glioblastoma cell line-derived xenograft models. Our data suggest that treatment in which SMPs are combined with TMZ reduces tumor growth and extends survival in mice bearing xenograft tumors derived from both TMZ-resistant and TMZ-sensitive human glioblastoma cell lines. Our findings demonstrate that combining SMPs with TMZ may have potential as a promising strategy for the treatment of GBM.
Collapse
Affiliation(s)
- Tao-Chieh Yang
- Department of Neurosurgery, School of Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan; (S.-J.L.); (Y.-L.T.)
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkou, Taoyuan 33302, Taiwan
| | - Wei-Lun Lo
- Division of Neurosurgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan;
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Shu-Mei Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Ya-Ling Tang
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan; (S.-J.L.); (Y.-L.T.)
| | - Yuan-Yun Tseng
- Division of Neurosurgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan;
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
- Correspondence: ; Tel.: +886-2-22490088 (ext. 8120); Fax: +886-2-22480900
| |
Collapse
|
12
|
Structural, Morphological and Biological Features of ZnO Nanoparticles Using Hyphaene thebaica (L.) Mart. Fruits. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01490-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Cleeton C, Keirouz A, Chen X, Radacsi N. Electrospun Nanofibers for Drug Delivery and Biosensing. ACS Biomater Sci Eng 2019; 5:4183-4205. [PMID: 33417777 DOI: 10.1021/acsbiomaterials.9b00853] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Early diagnosis and efficient treatment are of paramount importance to fighting cancers. Monitoring the foreign body response of a patient to treatment therapies also plays an important role in improving the care that cancer patients receive by their medical practitioners. As such, there is extensive research being conducted into ultrasensitive point-of-care detection systems and "smart" personalized anticancer drug delivery systems. Electrospun nanofibers have emerged as promising materials for the construction of nanoscale biosensors and therapeutic platforms because of their large surface areas, controllable surface conformation, good surface modification, complex pore structure, and high biocompatibility. Electrospun nanofibers are produced by electrospinning, which is a very powerful and economically viable method of synthesizing versatile and scalable assemblies from a wide array of raw materials. This review describes the theory of electrospinning, achievements, and problems currently faced in producing effective biosensors/drug delivery systems, in particular, for cancer diagnosis and treatment. Finally, insights into future prospects are discussed.
Collapse
Affiliation(s)
- Conor Cleeton
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom
| | - Antonios Keirouz
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, United Kingdom
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom
| |
Collapse
|
14
|
Novel binary grafted chitosan nanocarrier for sustained release of curcumin. Int J Biol Macromol 2019; 131:184-191. [DOI: 10.1016/j.ijbiomac.2019.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 02/13/2019] [Accepted: 03/02/2019] [Indexed: 02/08/2023]
|
15
|
Kopeckova K, Eckschlager T, Sirc J, Hobzova R, Plch J, Hrabeta J, Michalek J. Nanodrugs used in cancer therapy. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2019; 163:122-131. [PMID: 30967685 DOI: 10.5507/bp.2019.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 03/25/2019] [Indexed: 12/29/2022] Open
Abstract
Cancer despite the introduction of new targeted therapy remains for many patients a fatal disease. Nanotechnology in cancer medicine has emerged as a promising approach to defeat cancer. Targeted delivery of anti-cancer drugs by different nanosystems promises enhanced drug efficacy, selectivity, better safety profile and reduced systemic toxicity. The article presents an overview of recent developments in cancer nanomedicine. We focus on approved anti-cancer medical products and on the results of clinical studies, highlighting that liposomal and micellar cytostatics or albumin-based nanoparticles have less side effects and are more efficient than "free" drugs. In addition, we discuss results of in vitro and in vivo preclinical studies with lipid, inorganic and polymer nanosystems loaded by anticancer drugs which according to our meaning are important for development of new nanodrugs. Pharmacokinetic characteristics of nanodrugs are discussed and characterization of major nanotechnology systems used for cancer nanomedicine is presented.
Collapse
Affiliation(s)
- Katerina Kopeckova
- Department of Oncology, 2 nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Tomas Eckschlager
- Department of Pediatric Hematology and Oncology, 2 nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jakub Sirc
- Institute of Macromolecular Chemistry, Academy of Sciences of Czech Republic Corresponding author: Katerina Kopeckova, e-mail
| | - Radka Hobzova
- Institute of Macromolecular Chemistry, Academy of Sciences of Czech Republic Corresponding author: Katerina Kopeckova, e-mail
| | - Johana Plch
- Department of Pediatric Hematology and Oncology, 2 nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jan Hrabeta
- Department of Pediatric Hematology and Oncology, 2 nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jiri Michalek
- Institute of Macromolecular Chemistry, Academy of Sciences of Czech Republic Corresponding author: Katerina Kopeckova, e-mail
| |
Collapse
|
16
|
Nosrati H, Charmi J, Abedini S, Rashidi N, Attari E, Davaran S, Danafar H, Kheiri Manjili H. Preparation and characterization of magnetic theranostic nanoparticles for curcumin delivery and evaluation as MRI contrast agent. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4588] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hamed Nosrati
- Student Research Center; Zanjan University of Medical Sciences; Zanjan Iran
- Department of Pharmaceutical Biomaterials, School of Pharmacy; Zanjan University of Medical Sciences; Zanjan Iran
| | - Jalil Charmi
- Department of Physics, Faculty of Science; University of Zanjan; Zanjan 45371-38791 Iran
| | - Somayeh Abedini
- School of Pharmacy; Zanjan University of Medical Sciences; Zanjan Iran
| | - Nafis Rashidi
- School of Pharmacy; Zanjan University of Medical Sciences; Zanjan Iran
| | - Elahe Attari
- School of Pharmacy; Zanjan University of Medical Sciences; Zanjan Iran
| | - Soodabeh Davaran
- Drug Applied Research Center; Tabriz University of Medical Sciences; P.O. Box 51656-65811 Tabriz Iran
| | - Hossein Danafar
- Student Research Center; Zanjan University of Medical Sciences; Zanjan Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy; Zanjan University of Medical Sciences; Zanjan Iran
| | - Hamidreza Kheiri Manjili
- Department of Pharmaceutical Nanotechnology, School of Pharmacy; Zanjan University of Medical Sciences; Zanjan Iran
| |
Collapse
|
17
|
Nosrati H, Salehiabar M, Kheiri Manjili H, Davaran S, Danafar H. Theranostic nanoparticles based on magnetic nanoparticles: design, preparation, characterization, and evaluation as novel anticancer drug carrier and MRI contrast agent. Drug Dev Ind Pharm 2018; 44:1668-1678. [PMID: 29848101 DOI: 10.1080/03639045.2018.1483398] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
In this work, we reported the synthesis of curcumin (CUR)-loaded hydrophilic and hydrophobic natural amino acids (AAs)-modified iron oxide magnetic nanoparticles (IONPs). Two types of AAs, l-lysine (Lys) and l-phenylalanine (PhA), were selected to study their effects on loading capacity, release profile of CUR, biocompatibility, and anticancer activity. CUR-loaded AAs-modified IONPs (F@AAs@CUR NPs) were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM), and transmission electron microscopy (TEM) techniques. Next, the various kinetic equations were fitted to the release data of CUR from F@Lys@CUR NPs and F@PhA@CUR NPs. Additionally, hemolysis test and MTT assays on HFF-2 and HEK-293 cell lines were performed for determination of biocompatibility of AAs-coated IONPs. Finally, the anticancer activity of F@AAs@CUR NPs examined on MCF-7 breast cancer cell line. The results indicate that these nanocarriers are nontoxic and biocompatible and also F@AAs@CUR NPs are suitable carriers for delivery of curcumin and even other hydrophobic drugs. Also, the MRI training established the effectiveness of IONPs as contrast agent for the revealing of tumor as evidenced from the phantom images as well as higher T2 relaxivity.
Collapse
Affiliation(s)
- Hamed Nosrati
- a Student Research Center , Zanjan University of Medical Sciences , Zanjan , Iran.,b Department of Pharmaceutical Biomaterials, School of Pharmacy , Zanjan University of Medical Sciences , Zanjan , Iran
| | - Marziyeh Salehiabar
- c Department of Medicinal Chemistry , School of Pharmacy, Zanjan University of Medical Sciences , Zanjan , Iran
| | - Hamidreza Kheiri Manjili
- d Zanjan Pharmaceutical Biotechnology Research Center , Zanjan University of Medical Sciences , Zanjan , Iran
| | - Soodabeh Davaran
- e Drug Applied Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Hossein Danafar
- a Student Research Center , Zanjan University of Medical Sciences , Zanjan , Iran.,c Department of Medicinal Chemistry , School of Pharmacy, Zanjan University of Medical Sciences , Zanjan , Iran
| |
Collapse
|
18
|
Fu Y, Li X, Ren Z, Mao C, Han G. Multifunctional Electrospun Nanofibers for Enhancing Localized Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801183. [PMID: 29952070 PMCID: PMC6342678 DOI: 10.1002/smll.201801183] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/26/2018] [Indexed: 05/16/2023]
Abstract
Localized cancer treatment is one of the most effective strategies in clinical destruction of solid tumors at early stages as it can minimize the side effects of cancer therapeutics. Electrospun nanofibers have been demonstrated as a promising implantable platform in localized cancer treatment, enabling the on-site delivery of therapeutic components and minimizing side effects to normal tissues. This Review discusses the recent cutting-edge research with regard to electrospun nanofibers used for various therapeutic approaches, including gene therapy, chemotherapy, photodynamic therapy, thermal therapy, and combination therapy, in enhancing localized cancer treatment. Furthermore, it extensively analyzes the current challenges and potential breakthroughs in utilizing this novel platform for clinical transition in localized cancer treatment.
Collapse
Affiliation(s)
- Yike Fu
- State Key Laboratory of Silicon Materials, School of Materials
Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R.
China
| | - Xiang Li
- State Key Laboratory of Silicon Materials, School of Materials
Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R. China.,
| | - Zhaohui Ren
- State Key Laboratory of Silicon Materials, School of Materials
Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R. China.,
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life
Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway,
Norman, Oklahoma, 73019-5300, USA.,
| | - Gaorong Han
- State Key Laboratory of Silicon Materials, School of Materials
Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R.
China
| |
Collapse
|
19
|
Liu SJ, Yang TC, Yang ST, Chen YC, Tseng YY. Biodegradable hybrid-structured nanofibrous membrane supported chemoprotective gene therapy enhances chemotherapy tolerance and efficacy in malignant glioma rats. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:515-526. [PMID: 29658349 DOI: 10.1080/21691401.2018.1460374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemotherapy is ineffective for treating malignant glioma (MG) because of the low therapeutic levels of pharmaceuticals in tumour tissues and the well-known tumour resistance. The resistance to alkylators is modulated by the DNA repair protein O6-alkylguanine-DNA alkyltransferase (AGT). O6-benzylguanine (O6-BG) can irreversibly inactivate AGT by competing with O6-methylguanine and has been confirmed to increase the therapeutic activity of alkylators. We developed hybrid-structured poly[(d,l)-lactide-co-glycolide] nanofibrous membranes (HSNMs) that enable the sequential and sustained release of O6-BG and two alkylators (carmustine and temozolomide [TMZ]). HSNMs were surgically instilled into the cerebral cavity of pathogen-free rats and F98 glioma-bearing rats. The release behaviours of loaded drugs were quantified by using high-performance liquid chromatography. The treatment results were compared with the rats treated with intraperitoneal injection of O6-BG combined with surgical implantation of carmustine wafer and oral TMZ. The HSNMs revealed a sequential drug release behaviour with the elution of high drug concentrations of O6-BG in the early phase, followed by high levels of two alkylators. All drug concentrations remained high for over 14 weeks. Tumour growth was slower and the mean survival time was significantly prolonged in the HSNM-treated group. Biodegradable HSNMs can enhance therapeutic efficacy and prevent toxic systemic effects.
Collapse
Affiliation(s)
- Shih-Jung Liu
- a Department of Mechanical Engineering , Chang Gung University , Tao-Yuan , Taiwan, ROC.,b Department of Orthopedic Surgery , Chang Gung Memorial Hospital , Tao-Yuan , Taiwan, ROC
| | - Tao-Chieh Yang
- c Department of Neurosurgery , Asia University Hospital , Taichung , Taiwan, ROC
| | - Shun-Tai Yang
- d Division of Neurosurgery, Department of Surgery , Shuang Ho Hospital, Taipei Medical University , Taipei , Taiwan, ROC.,e Department of Surgery, School of Medicine, College of Medicine , Taipei Medical University , Taipei , Taiwan, ROC
| | - Ying-Chun Chen
- a Department of Mechanical Engineering , Chang Gung University , Tao-Yuan , Taiwan, ROC
| | - Yuan-Yun Tseng
- d Division of Neurosurgery, Department of Surgery , Shuang Ho Hospital, Taipei Medical University , Taipei , Taiwan, ROC.,e Department of Surgery, School of Medicine, College of Medicine , Taipei Medical University , Taipei , Taiwan, ROC
| |
Collapse
|
20
|
Haeri A, Osouli M, Bayat F, Alavi S, Dadashzadeh S. Nanomedicine approaches for sirolimus delivery: a review of pharmaceutical properties and preclinical studies. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1-14. [DOI: 10.1080/21691401.2017.1408123] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Azadeh Haeri
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahraz Osouli
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Bayat
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sonia Alavi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Rahmani Del Bakhshayesh A, Annabi N, Khalilov R, Akbarzadeh A, Samiei M, Alizadeh E, Alizadeh-Ghodsi M, Davaran S, Montaseri A. Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:691-705. [PMID: 28697631 DOI: 10.1080/21691401.2017.1349778] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The tissue engineering field has developed in response to the shortcomings related to the replacement of the tissues lost to disease or trauma: donor tissue rejection, chronic inflammation and donor tissue shortages. The driving force behind the tissue engineering is to avoid the mentioned issues by creating the biological substitutes capable of replacing the damaged tissue. This is done by combining the scaffolds, cells and signals in order to create the living, physiological, three-dimensional tissues. A wide variety of skin substitutes are used in the treatment of full-thickness injuries. Substitutes made from skin can harbour the latent viruses, and artificial skin grafts can heal with the extensive scarring, failing to regenerate structures such as glands, nerves and hair follicles. New and practical skin scaffold materials remain to be developed. The current article describes the important information about wound healing scaffolds. The scaffold types which were used in these fields were classified according to the accepted guideline of the biological medicine. Moreover, the present article gave the brief overview on the fundamentals of the tissue engineering, biodegradable polymer properties and their application in skin wound healing. Also, the present review discusses the type of the tissue engineered skin substitutes and modern wound dressings which promote the wound healing.
Collapse
Affiliation(s)
- Azizeh Rahmani Del Bakhshayesh
- a Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran.,b Student Research Committee , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Nasim Annabi
- c Biomaterials Innovation Research Center, Brigham and Women's Hospital , Harvard Medical School , Cambridge , MA , USA.,d Harvard-MIT Division of Health Sciences and Technology , Massachusetts Institute of Technology , Cambridge , MA , USA.,e Department of Chemical Engineering , Northeastern University , Boston , MA , USA
| | - Rovshan Khalilov
- f Institute of Radiation Problems , National Academy of Sciences of Azerbaijan , Baku , Azerbaijan
| | - Abolfazl Akbarzadeh
- g Stem Cell Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohammad Samiei
- a Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran.,h Department of Endodontics, Faculty of Dentistry , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Effat Alizadeh
- i Drug Applied Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | | | - Soodabeh Davaran
- i Drug Applied Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Azadeh Montaseri
- j Department of Anatomical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
22
|
Salimi F, Dilmaghani KA, Alizadeh E, Akbarzadeh A, Davaran S. Enhancing cisplatin delivery to hepatocellular carcinoma HepG2 cells using dual sensitive smart nanocomposite. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:949-958. [PMID: 28687054 DOI: 10.1080/21691401.2017.1349777] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Targeted entrance and accumulation of higher doses of drugs into malignant cells could help in intensification of tumor specific cytotoxicity. A dual-responsive nanogel, poly(N-isopropylacrylamide)-co-poly(N,N-(dimethylamino)ethyl methacrylate) [P(NIPAM-co-DMA)] containing N-isopropylacrylamide (NIPAM) as thermoresponsive monomer and N,N-(dimethylamino)ethyl methacrylate (DMA) as pH-responsive monomer and methylene-bis-acrylamide (MBA) as cross-linking agent, was synthesized by free radical emulsion polymerization. Cisplatin along with magnetic Fe3O4 nanoparticles (MNPs) was loaded into the nanogel by physically embedding the magnetic nanoparticles into hydrogel matrix after gelation to obtain drug-loaded magnetic nanocomposite [P(NIPAM-co-DMA)/Fe3O4]. Drug loading efficiencies and drug release profiles of cisplatin-loaded P(NIPAM-co-DMA) nanogel and P(NIPAM-co-DMA)/Fe3O4 nanocomposite were evaluated in vitro for controlled drug delivery in different temperature and pH conditions. Finally, the anticancer activity of P(NIPAM-co-DMA)/Fe3O4 nanocomposite on human liver HepG2 cells was evaluated. Nanogel and nanocomposite showed significantly higher (p < .05) cisplatin release at 40 °C compared to 37 °C and at pH 5.7 compared to pH 7.4, demonstrating their temperature and pH sensitivity, respectively. The cytotoxicity assay of drug free nanogel on HepG2 cell line indicated that the nanogel is biocompatible and suitable as drug carrier. Moreover, MTT assay revealed that the cisplatin-loaded nanocomposite represented significant superior cytotoxicity (p < .05) to HepG2 cells as compared with free cisplatin.
Collapse
Affiliation(s)
- Farzaneh Salimi
- a Department of Chemistry, Faculty of Science , Urmia University , Urmia , Iran
| | | | - Effat Alizadeh
- b Department of Medical Biotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Abolfazl Akbarzadeh
- c Tuberculosis and Lung Disease Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,d Universal Scientific Education and Research Network (USERN) , Tabriz , Iran
| | - Soodabeh Davaran
- e Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran.,f Drug Applied Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
23
|
Wang H, Sun M, Li D, Yang X, Han C, Pan W. Redox sensitive PEG controlled octaarginine and targeting peptide co-modified nanostructured lipid carriers for enhanced tumour penetrating and targeting in vitro and in vivo. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:313-322. [PMID: 28362124 DOI: 10.1080/21691401.2017.1307214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
To strengthen the anti-tumour efficacy and weaken the side effects, a nano targeted drug delivery system was constructed. The nanostructured lipid carriers (NLCs) were prepared by the melt-emulsification method. Modified with the octaarginine, thiolytic cleavable polyethylene glycol (PEG) and targeting peptide simultaneously on the surface, this multifunctional NLC could not only actively target to tumour tissues, but also control the cell penetration effect of the octaarginine easily by a safe reducing agent l-cysteine (l-Cys). In the present study, the pharmaceutical characteristics, the cytotoxicity and cellular uptake on NCI-H1299 cells in vitro, the biodistribution and targeting effect and anti-tumour ability in vivo were employed to evaluate the formulations. As the results revealed, various NLCs had a mean particle size of about 40 nm and a positive zeta potential of about 10 mV. The optimum density of cleavable PEG was confirmed as 10% and the best concentration of l-cysteine was determined as 20 mM via the qualitative and quantitative cellular uptake study. Based on these outcomes, the multiply decorated NLC manifested a great cell growth inhibition with the increased concentration of paclitaxel (PTX). Moreover, it preferred to accumulate at tumours, but not normal organs in vivo. Compared with Taxol®, this preparation demonstrated stronger anti-tumour efficacy and better security. Therefore, the multifunctional NLC can be considered as a promising drug delivery system targeting to tumours.
Collapse
Affiliation(s)
- Huixin Wang
- a School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , China
| | - Mingshuang Sun
- a School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , China
| | - Dongyang Li
- a School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , China
| | - Xinggang Yang
- a School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , China
| | - Cuiyan Han
- b School of Pharmacy , Qiqihar Medical University , Qiqihar , China
| | - Weisan Pan
- a School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , China
| |
Collapse
|