1
|
Okamoto W, Hasegawa M, Kohyama N, Kobayashi T, Usui T, Onozawa H, Hashimoto R, Iwazaki M, Kohno M, Georgieva R, Bäumler H, Komatsu T. Core-Shell Structured Hemoglobin Nanoparticles as Artificial O 2 Carriers. ACS APPLIED BIO MATERIALS 2022; 5:5844-5853. [PMID: 36399036 DOI: 10.1021/acsabm.2c00813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This paper describes the synthesis and O2 binding properties of core-shell structured hemoglobin (Hb) nanoparticles (NPs), artificial O2 carriers of five types, as designed for use as red blood cell (RBC) substitutes. Human adult Hbs were polymerized using α-succinimidyl-ω-maleimide and dithiothreitol in spheroidal shapes to create parent particles. Subsequent covalent wrapping of the sphere with human serum albumin (HSA) yielded 100 nm-diameter Hb nanoparticles (HbNPs). The HbNP showed higher O2 affinity than that of RBC, but NPs prepared under a N2 atmosphere exhibited low O2 affinity. Entirely synthetic particles comprising recombinant human adult Hb and recombinant HSA were also fabricated. Using a recombinant Hb (rHb) variant in which Leu-β28 of the heme pocket had been replaced with Phe, we found somewhat low O2 affinity of rHb(βL28F)NP. Particles made of stroma-free Hb (SFHb) containing natural antioxidant enzyme catalase (SFHbNP) formed a very stable O2 complex, even in aqueous H2O2 solution. The SFHbNP showed good blood compatibility and did not affect the blood cell component functionality. The circulation half-life of SFHbNP in rats was considerably longer than that of naked Hb. All results indicate these Hb-based NPs as useful alternative materials for RBC and as a useful O2 therapeutic reagent in diverse medical scenarios.
Collapse
Affiliation(s)
- Wataru Okamoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Mai Hasegawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Natsumi Kohyama
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Tatsuhiro Kobayashi
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Tomone Usui
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Hiroto Onozawa
- Department of General Thoracic Surgery, School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Ryo Hashimoto
- Department of General Thoracic Surgery, School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Masayuki Iwazaki
- Department of General Thoracic Surgery, School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Mitsutomo Kohno
- Department of General Thoracic Surgery, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe, Saitama 350-8550, Japan
| | - Radostina Georgieva
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, Berlin 10117, Germany.,Department of Medical Physics, Biophysics and Radiology, Medical Faculty, Trakia University, Stara Zagora 6000, Bulgaria
| | - Hans Bäumler
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, Berlin 10117, Germany
| | - Teruyuki Komatsu
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
2
|
Alayash AI. Oxidation reactions of cellular and acellular hemoglobins: Implications for human health. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:1068972. [DOI: 10.3389/fmedt.2022.1068972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/31/2022] [Indexed: 11/29/2022] Open
Abstract
Oxygen reversibly binds to the redox active iron, a transition metal in human Hemoglobin (Hb), which subsequently undergoes oxidation in air. This process is akin to iron rusting in non-biological systems. This results in the formation of non-oxygen carrying methemoglobin (ferric) (Fe3+) and reactive oxygen species (ROS). In circulating red blood cells (RBCs), Hb remains largely in the ferrous functional form (HbF2+) throughout the RBC's lifespan due to the presence of effective enzymatic and non-enzymatic proteins that keep the levels of metHb to a minimum (1%–3%). In biological systems Hb is viewed as a Fenton reagent where oxidative toxicity is attributed to the formation of a highly reactive hydroxyl radical (OH•) generated by the reaction between Hb's iron (Fe2+) and hydrogen peroxide (H2O2). However, recent research on both cellular and acellular Hbs revealed that the protein engages in enzymatic-like activity when challenged with H2O2, resulting in the formation of a highly reactive ferryl heme (Fe4+) that can target other biological molecules before it self-destructs. Accumulating evidence from several in vitro and in vivo studies are summarized in this review to show that Hb's pseudoperoxidase activity is physiologically more dominant than the Fenton reaction and it plays a pivotal role in the pathophysiology of several blood disorders, storage lesions associated with old blood, and in the toxicity associated with the infusion of Hb-derived oxygen therapeutics.
Collapse
|
3
|
An Overview of Therapy Guidelines for Cardiac Arrest and the Potential Benefits of Hemoglobin-Based Oxygen Carriers. CARDIOGENETICS 2022. [DOI: 10.3390/cardiogenetics12010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Currently, there is an unmet therapeutic need for the medical management of cardiac arrest, as is evident from the high mortality rate associated with this condition. These dire outcomes can be attributed to the severe nature and poor prognosis of this disorder. However, the current treatment modalities, while helping to augment survival, are limited and do not offer adequate improvements to outcomes. Treatment modalities are particularly lacking when considering the underlying pathophysiology of the metabolic phase of cardiac arrest. In this study, we explore the three phases of cardiac arrest and assess the factors related to positive clinical outcomes and survival for these events. Furthermore, we evaluate the present guidelines for resuscitation and recovery, the issues related to ischemia and tissue reperfusion, and the benefit of oxygen-delivery therapeutic methods including blood transfusion therapy and synthetic hemoglobins (HBOCs). The current therapy protocols are limited specifically by the lack of an efficient method of oxygen delivery to address the metabolic phase of cardiac arrest. In this article, we investigate the next generation of HBOCs and review their properties that make them attractive for their potential application in the treatment of cardiac arrest. These products may be a viable solution to address complications associated with ischemia, reperfusion injury, and organ damage.
Collapse
|
4
|
Faggiano S, Ronda L, Bruno S, Abbruzzetti S, Viappiani C, Bettati S, Mozzarelli A. From hemoglobin allostery to hemoglobin-based oxygen carriers. Mol Aspects Med 2021; 84:101050. [PMID: 34776270 DOI: 10.1016/j.mam.2021.101050] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/18/2022]
Abstract
Hemoglobin (Hb) plays its vital role through structural and functional properties evolutionarily optimized to work within red blood cells, i.e., the tetrameric assembly, well-defined oxygen affinity, positive cooperativity, and heterotropic allosteric regulation by protons, chloride and 2,3-diphosphoglycerate. Outside red blood cells, the Hb tetramer dissociates into dimers, which exhibit high oxygen affinity and neither cooperativity nor allosteric regulation. They are prone to extravasate, thus scavenging endothelial NO and causing hypertension, and cause nephrotoxicity. In addition, they are more prone to autoxidation, generating radicals. The need to overcome the adverse effects associated with cell-free Hb has always been a major hurdle in the development of substitutes of allogeneic blood transfusions for all clinical situations where blood is unavailable or cannot be used due to, for example, religious objections. This class of therapeutics, indicated as hemoglobin-based oxygen carriers (HBOCs), is formed by genetically and/or chemically modified Hbs. Many efforts were devoted to the exploitation of the wealth of biochemical and biophysical information available on Hb structure, function, and dynamics to design safe HBOCs, overcoming the negative effects of free plasma Hb. Unfortunately, so far, no HBOC has been approved by FDA and EMA, except for compassionate use. However, the unmet clinical needs that triggered intensive investigations more than fifty years ago are still awaiting an answer. Recently, HBOCs "repositioning" has led to their successful application in organ perfusion fluids.
Collapse
Affiliation(s)
- Serena Faggiano
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council, Pisa, Italy
| | - Luca Ronda
- Institute of Biophysics, National Research Council, Pisa, Italy; Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Stefano Bruno
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Stefania Abbruzzetti
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parma, Italy
| | - Cristiano Viappiani
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parma, Italy
| | - Stefano Bettati
- Institute of Biophysics, National Research Council, Pisa, Italy; Department of Medicine and Surgery, University of Parma, Parma, Italy; National Institute of Biostructures and Biosystems, Rome, Italy
| | - Andrea Mozzarelli
- Department of Food and Drug, University of Parma, Parma, Italy; Institute of Biophysics, National Research Council, Pisa, Italy.
| |
Collapse
|
5
|
Matsuhira T, Sakai H. Entropy-Driven Supramolecular Ring-Opening Polymerization of a Cyclic Hemoglobin Monomer for Constructing a Hemoglobin-PEG Alternating Polymer with Structural Regularity. Biomacromolecules 2021; 22:1944-1954. [PMID: 33856766 DOI: 10.1021/acs.biomac.1c00061] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Our earlier report described that a cyclic hemoglobin (Hb) monomer with two β subunits of a Hb molecule (α2β2) bound through a flexible polyethylene glycol (PEG) chain undergoes reversible supramolecular ring-opening polymerization (S-ROP) to produce a supramolecular Hb polymer with a Hb-PEG alternating structure. In this work, we polymerized cyclic Hb monomers with different ring sizes (2, 5, 10, or 20 kDa PEG) to evaluate the thermodynamics of S-ROP equilibrium. Quantification of the produced supramolecular Hb polymers and the remaining cyclic Hb monomers in the equilibrium state revealed a negligibly small enthalpy change in S-ROP (ΔHp ≤ 1 kJ·mol-1) and a markedly positive entropy change increasing with the ring size (ΔSp = 26.8-33.2 J·mol-1·K-1). The results suggest an entropy-driven mechanism in S-ROP: a cyclic Hb monomer with the larger ring size prefers to form a supramolecular Hb polymer. The S-ROP used for this study has the potential to construct submicrometer-sized Hb-PEG alternating polymers having structural regularity.
Collapse
Affiliation(s)
- Takashi Matsuhira
- Department of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan
| | - Hiromi Sakai
- Department of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan
| |
Collapse
|
6
|
Matsuhira T, Yamamoto K, Sakai H. Ring-Opening Polymerization of Hemoglobin. Biomacromolecules 2019; 20:1592-1602. [DOI: 10.1021/acs.biomac.8b01789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Takashi Matsuhira
- Department of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan
| | - Keizo Yamamoto
- Department of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan
| | - Hiromi Sakai
- Department of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan
| |
Collapse
|
7
|
Ghirmai S, Bülow L, Sakai H. In vivo evaluation of electron mediators for the reduction of methemoglobin encapsulated in liposomes using electron energies produced by red blood cell glycolysis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1364-1372. [DOI: 10.1080/21691401.2017.1397003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Semhar Ghirmai
- Department of Chemistry, Nara Medical University, Kashihara, Japan
- Department of Pure and Applied Biochemistry, Lund University, Lund, Sweden
| | - Leif Bülow
- Department of Pure and Applied Biochemistry, Lund University, Lund, Sweden
| | - Hiromi Sakai
- Department of Chemistry, Nara Medical University, Kashihara, Japan
| |
Collapse
|