1
|
Yang L, Huangfu C, Wang Y, Qin Y, Qin A, Feng L. Visual detection of aldehyde gases using a silver-loaded paper-based colorimetric sensor array. Talanta 2024; 280:126716. [PMID: 39173250 DOI: 10.1016/j.talanta.2024.126716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
The small molecule aldehydes are volatile organic compounds (VOCs), possessing cytotoxicity and carcinogenicity. Long-term exposure can pose a serious threat to human health. Based on an in-situ reduction colorimetric method to generate silver nanoparticles and induce colorimetric response, we proposed a silver-loaded paper-based colorimetric sensor array for visually detecting and differentiating five relatively common trace small molecule aldehyde gases. The silver ions are immobilized onto a porous filter paper and stabilized by complexing agents of branched polyethyleneimine, ethylenediamine, and 1,6-diaminohexane, respectively. The as-fabricated sensor array expresses remarkable stability and capacity to resist humidity. The qualitative analysis reveals that the sensor array has excellent selectivity for aldehyde gases and displays remarkable anti-interference ability. The quantitative analysis indicates that the sensor array exhibits superior sensitivity for five aldehyde gases, with limits of detection (LODs) of 9.0 ppb for formaldehyde (FA), 3.1 ppm for acetaldehyde (AA), 3.5 ppm for propionaldehyde (PA), 23.8 ppb for glutaric dialdehyde (GD), and 71.5 ppb for hydroxy formaldehyde (HF), respectively. Importantly, these LODs are all comfortably below their respective permissible exposure limits. A unique colorimetric response fingerprint is observed for each analyte. Standard chemometric methods illustrate that the sensor array has excellent clustering capability for these aldehyde gases. Additionally, the sensor array's response is irreversible and possesses outstanding performance for cumulative monitoring. This colorimetric sensor array based on silver ions reduced to silver nanoparticles offers a novel detection method for the continuous, ultrasensitive, and visual detection of trace airborne pollutants.
Collapse
Affiliation(s)
- Lihua Yang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; School of Materials Science and Engineering, Guilin University of Technology, Guilin, 541000, PR China
| | - Changxin Huangfu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Yu Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Yingxi Qin
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; School of Materials Science and Engineering, Guilin University of Technology, Guilin, 541000, PR China
| | - Aimiao Qin
- School of Materials Science and Engineering, Guilin University of Technology, Guilin, 541000, PR China.
| | - Liang Feng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.
| |
Collapse
|
2
|
Gomes MPDB, Linhares JHR, Dos Santos TP, Pereira RC, Santos RT, da Silva SA, Souza MCDO, da Silva JFA, Trindade GF, Gomes VS, Barreto-Vieira DF, Carvalho MMVF, Ano Bom APD, Gardinali NR, Müller R, Alves NDS, Moura LDC, Neves PCDC, Esteves GS, Schwarcz WD, Missailidis S, Mendes YDS, de Lima SMB. Inactivated and Immunogenic SARS-CoV-2 for Safe Use in Immunoassays and as an Immunization Control for Non-Clinical Trials. Viruses 2023; 15:1486. [PMID: 37515173 PMCID: PMC10386713 DOI: 10.3390/v15071486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Successful SARS-CoV-2 inactivation allows its safe use in Biosafety Level 2 facilities, and the use of the whole viral particle helps in the development of analytical methods and a more reliable immune response, contributing to the development and improvement of in vitro and in vivo assays. In order to obtain a functional product, we evaluated several inactivation protocols and observed that 0.03% beta-propiolactone for 24 h was the best condition tested, as it promoted SARS-CoV-2 inactivation above 99.99% and no cytopathic effect was visualized after five serial passages. Moreover, RT-qPCR and transmission electron microscopy revealed that RNA quantification and viral structure integrity were preserved. The antigenicity of inactivated SARS-CoV-2 was confirmed by ELISA using different Spike-neutralizing monoclonal antibodies. K18-hACE2 mice immunized with inactivated SARS-CoV-2, formulated in AddaS03TM, presented high neutralizing antibody titers, no significant weight loss, and longer survival than controls from a lethal challenge, despite RNA detection in the oropharyngeal swab, lung, and brain. This work emphasizes the importance of using different techniques to confirm viral inactivation and avoid potentially disastrous contamination. We believe that an efficiently inactivated product can be used in several applications, including the development and improvement of molecular diagnostic kits, as an antigen for antibody production as well as a control for non-clinical trials.
Collapse
Affiliation(s)
| | | | | | - Renata Carvalho Pereira
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Renata Tourinho Santos
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | | | | | | | - Gisela Freitas Trindade
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Viviane Silva Gomes
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | | | | | - Ana Paula Dinis Ano Bom
- Immunological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Noemi Rovaris Gardinali
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Rodrigo Müller
- Pre-Clinical Trials Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | | | - Luma da Cruz Moura
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | | | - Gabriela Santos Esteves
- Recombinant Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Waleska Dias Schwarcz
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Sotiris Missailidis
- Institute of Technology in Immunobiologicals, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Ygara da Silva Mendes
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | | |
Collapse
|
3
|
3D printed ceramics as solid supports for enzyme immobilization: an automated DoE approach for applications in continuous flow. J Flow Chem 2021; 11:675-689. [PMID: 34745652 PMCID: PMC8563604 DOI: 10.1007/s41981-021-00163-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/12/2021] [Indexed: 11/03/2022]
Abstract
In recent years, 3D printing has emerged in the field of chemical engineering as a powerful manufacturing technique to rapidly design and produce tailor-made reaction equipment. In fact, reactors with complex internal geometries can be easily fabricated, optimized and interchanged in order to respond to precise process needs, such as improved mixing and increased surface area. These advantages make them interesting especially for catalytic applications, since customized structured bed reactors can be easily produced. 3D printing applications are not limited to reactor design, it is also possible to realize functional low cost alternatives to analytical equipment that can be used to increase the level of process understanding while keeping the investment costs low. In this work, in-house designed ceramic structured inserts printed via vat photopolymerization (VPP) are presented and characterized. The flow behavior inside these inserts was determined with residence time distribution (RTD) experiments enabled by in-house designed and 3D printed inline photometric flow cells. As a proof of concept, these structured inserts were fitted in an HPLC column to serve as solid inorganic supports for the immobilization of the enzyme Phenolic acid Decarboxylase (bsPAD), which catalyzes the decarboxylation of cinnamic acids. The conversion of coumaric acid to vinylphenol was chosen as a model system to prove the implementation of these engineered inserts in a continuous biocatalytic application with high product yield and process stability. The setup was further automated in order to quickly identify the optimum operating conditions via a Design of Experiments (DoE) approach. The use of a systematic optimization, together with the adaptability of 3D printed equipment to the process requirements, render the presented approach highly promising for a more feasible implementation of biocatalysts in continuous industrial processes. Graphical abstract. Supplementary Information The online version contains supplementary material available at 10.1007/s41981-021-00163-4.
Collapse
|
4
|
Li Q, Ma H, Zhang Y, Feng K, Yang P, Li J, Zhu H, Chen C, Yan K. HPLC method for Residual 2-Bromoethylamine Hydrobromide in Hemoglobin-based Oxygen Carriers Derived with 4-Methoxybenzenesulfonyl Chloride. J LIQ CHROMATOGR R T 2018. [DOI: 10.1080/10826076.2018.1488139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Qiuhui Li
- College of Life Science, Northwest University, Xi′an, P.R. China
| | - Huiya Ma
- College of Life Science, Northwest University, Xi′an, P.R. China
| | - Yuanyuan Zhang
- College of Life Science, Northwest University, Xi′an, P.R. China
| | - Kun Feng
- College of Life Science, Northwest University, Xi′an, P.R. China
| | | | - Jianjun Li
- Shaanxi Lifegen Co., Ltd, Xi’an, P.R. China
- College of Chemistry & Materials Science, Northwest University, Xi’an, P.R. China
| | - Hongli Zhu
- College of Life Science, Northwest University, Xi′an, P.R. China
- National Engineering Research Center for Miniaturized Detection System, Xi’an, P.R. China
| | - Chao Chen
- College of Life Science, Northwest University, Xi′an, P.R. China
- National Engineering Research Center for Miniaturized Detection System, Xi’an, P.R. China
| | - Kunping Yan
- College of Life Science, Northwest University, Xi′an, P.R. China
- National Engineering Research Center for Miniaturized Detection System, Xi’an, P.R. China
| |
Collapse
|