1
|
Ning J, Sala M, Reina J, Kalagiri R, Hunter T, McCullough BS. Histidine Phosphorylation: Protein Kinases and Phosphatases. Int J Mol Sci 2024; 25:7975. [PMID: 39063217 PMCID: PMC11277029 DOI: 10.3390/ijms25147975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Phosphohistidine (pHis) is a reversible protein post-translational modification (PTM) that is currently poorly understood. The P-N bond in pHis is heat and acid-sensitive, making it more challenging to study than the canonical phosphoamino acids pSer, pThr, and pTyr. As advancements in the development of tools to study pHis have been made, the roles of pHis in cells are slowly being revealed. To date, a handful of enzymes responsible for controlling this modification have been identified, including the histidine kinases NME1 and NME2, as well as the phosphohistidine phosphatases PHPT1, LHPP, and PGAM5. These tools have also identified the substrates of these enzymes, granting new insights into previously unknown regulatory mechanisms. Here, we discuss the cellular function of pHis and how it is regulated on known pHis-containing proteins, as well as cellular mechanisms that regulate the activity of the pHis kinases and phosphatases themselves. We further discuss the role of the pHis kinases and phosphatases as potential tumor promoters or suppressors. Finally, we give an overview of various tools and methods currently used to study pHis biology. Given their breadth of functions, unraveling the role of pHis in mammalian systems promises radical new insights into existing and unexplored areas of cell biology.
Collapse
Affiliation(s)
- Jia Ning
- Correspondence: (J.N.); (B.S.M.)
| | | | | | | | | | - Brandon S. McCullough
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; (M.S.); (J.R.); (R.K.); (T.H.)
| |
Collapse
|
2
|
Panja S, Truica MI, Yu CY, Saggurthi V, Craige MW, Whitehead K, Tuiche MV, Al-Saadi A, Vyas R, Ganesan S, Gohel S, Coffman F, Parrott JS, Quan S, Jha S, Kim I, Schaeffer E, Kothari V, Abdulkadir SA, Mitrofanova A. Mechanism-centric regulatory network identifies NME2 and MYC programs as markers of Enzalutamide resistance in CRPC. Nat Commun 2024; 15:352. [PMID: 38191557 PMCID: PMC10774320 DOI: 10.1038/s41467-024-44686-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/22/2023] [Indexed: 01/10/2024] Open
Abstract
Heterogeneous response to Enzalutamide, a second-generation androgen receptor signaling inhibitor, is a central problem in castration-resistant prostate cancer (CRPC) management. Genome-wide systems investigation of mechanisms that govern Enzalutamide resistance promise to elucidate markers of heterogeneous treatment response and salvage therapies for CRPC patients. Focusing on the de novo role of MYC as a marker of Enzalutamide resistance, here we reconstruct a CRPC-specific mechanism-centric regulatory network, connecting molecular pathways with their upstream transcriptional regulatory programs. Mining this network with signatures of Enzalutamide response identifies NME2 as an upstream regulatory partner of MYC in CRPC and demonstrates that NME2-MYC increased activities can predict patients at risk of resistance to Enzalutamide, independent of co-variates. Furthermore, our experimental investigations demonstrate that targeting MYC and its partner NME2 is beneficial in Enzalutamide-resistant conditions and could provide an effective strategy for patients at risk of Enzalutamide resistance and/or for patients who failed Enzalutamide treatment.
Collapse
Affiliation(s)
- Sukanya Panja
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Mihai Ioan Truica
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Christina Y Yu
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Vamshi Saggurthi
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Michael W Craige
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Katie Whitehead
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Mayra V Tuiche
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
- Rutgers Biomedical and Health Sciences, Rutgers School of Graduate Studies, Newark, NJ, 07039, USA
| | - Aymen Al-Saadi
- Department of Electrical and Computer Engineering, Rutgers School of Engineering, New Brunswick, NJ, 08854, USA
| | - Riddhi Vyas
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | - Suril Gohel
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Frederick Coffman
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - James S Parrott
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Songhua Quan
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Shantenu Jha
- Department of Electrical and Computer Engineering, Rutgers School of Engineering, New Brunswick, NJ, 08854, USA
| | - Isaac Kim
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Urology, Yale School of Medicine, New Heaven, CT, 06510, USA
| | - Edward Schaeffer
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Vishal Kothari
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Sarki A Abdulkadir
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, 60611, USA.
| | - Antonina Mitrofanova
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA.
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
3
|
Bao-Caamano A, Costa-Fraga N, Cayrefourcq L, Rodriguez-Casanova A, Muinelo-Romay L, López-López R, Alix-Panabières C, Díaz-Lagares A. Epigenomic reprogramming of therapy-resistant circulating tumor cells in colon cancer. Front Cell Dev Biol 2023; 11:1291179. [PMID: 38188020 PMCID: PMC10771310 DOI: 10.3389/fcell.2023.1291179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
Therapy resistance is a major challenge in colorectal cancer management. Epigenetic changes, such as DNA methylation, in tumor cells are involved in the development of acquired resistance during treatment. Here, we characterized the DNA methylation landscape of colon circulating tumor cells (CTCs) during cancer progression and therapy resistance development. To this aim, we used nine permanent CTC lines that were derived from peripheral blood samples of a patient with metastatic colon cancer collected before treatment initiation (CTC-MCC-41) and during treatment and cancer progression (CTC-MCC-41.4 and CTC-MCC-41.5 [A-G]). We analyzed the DNA methylome of these nine CTC lines using EPIC arrays and also assessed the association between DNA methylation and gene expression profiles. We confirmed DNA methylation and gene expression results by pyrosequencing and RT-qPCR, respectively. The global DNA methylation profiles were different in the pre-treatment CTC line and in CTC lines derived during therapy resistance development. These resistant CTC lines were characterized by a more hypomethylated profile compared with the pre-treatment CTC line. Most of the observed DNA methylation differences were localized at CpG-poor regions and some in CpG islands, shore regions and promoters. We identified a distinctive DNA methylation signature that clearly differentiated the pre-treatment CTC line from the others. Of note, the genes involved in this signature were associated with cancer-relevant pathways, including PI3K/AKT, MAPK, Wnt signaling and metabolism. We identified several epigenetically deregulated genes associated with therapy resistance in CTCs, such as AP2M1. Our results bring new knowledge on the epigenomic landscape of therapy-resistant CTCs, providing novel mechanisms of resistance as well as potential biomarkers and therapeutic targets for advanced CRC management.
Collapse
Affiliation(s)
- Aida Bao-Caamano
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Nicolás Costa-Fraga
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells–The Liquid Biopsy Lab, University Medical Center of Montpellier, Montpellier, France
- Centre for Ecological and Evolutionary Cancer Research, Maladies infectieuses et vecteurs: génétique, èvolution et contrôle, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Aitor Rodriguez-Casanova
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Roche-Chus Joint Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - Laura Muinelo-Romay
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Liquid Biopsy Analysis Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, Madrid, Spain
| | - Rafael López-López
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Roche-Chus Joint Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, Madrid, Spain
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells–The Liquid Biopsy Lab, University Medical Center of Montpellier, Montpellier, France
- Centre for Ecological and Evolutionary Cancer Research, Maladies infectieuses et vecteurs: génétique, èvolution et contrôle, University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Angel Díaz-Lagares
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, Madrid, Spain
- Department of Clinical Analysis, University Hospital Complex of Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| |
Collapse
|
4
|
Moreta-Moraleda C, Queralt C, Vendrell-Ayats C, Forcales S, Martínez-Balibrea E. Chromatin factors: Ready to roll as biomarkers in metastatic colorectal cancer? Pharmacol Res 2023; 196:106924. [PMID: 37709185 DOI: 10.1016/j.phrs.2023.106924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/29/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent cancer globally and stands as the fourth leading cause of cancer-related fatalities in 2020. Survival rates for metastatic disease have slightly improved in recent decades, with clinical trials showing median overall survival of approximately 24-30 months. This progress can be attributed to the integration of chemotherapeutic treatments alongside targeted therapies and immunotherapy. Despite these modest improvements, the primary obstacle to successful treatment for advanced CRC lies in the development of chemoresistance, whether inherent or acquired, which remains the major cause of treatment failure. Epigenetics has emerged as a hallmark of cancer, contributing to master transcription regulation and genome stability maintenance. As a result, epigenetic factors are starting to appear as potential clinical biomarkers for diagnosis, prognosis, and prediction of treatment response in CRC.In recent years, numerous studies have investigated the influence of DNA methylation, histone modifications, and chromatin remodelers on responses to chemotherapeutic treatments. While there is accumulating evidence indicating their significant involvement in various types of cancers, the exact relationship between chromatin landscapes and treatment modulation in CRC remains elusive. This review aims to provide a comprehensive summary of the most pertinent and extensively researched epigenetic-associated mechanisms described between 2015 and 2022 and their potential usefulness as predictive biomarkers in the metastatic disease.
Collapse
Affiliation(s)
- Cristina Moreta-Moraleda
- Immunology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, c/Feixa Llarga s/n, 08917 L'Hospitalet de Llobregat, Barcelona, Spain; Group of Inflammation, Immunity and Cancer, Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), The Bellvitge Biomedical Research Institute ( IDIBELL), Hospital Duran i Reynals 3a Planta, Av. Gran Via de l'Hospitalet 199, 08908 L'Hospitalet de Llobregat, Spain
| | - Cristina Queralt
- ProCURE Program, Catalan Instiute of Oncology, Carretera de Can Ruti, camí de les escoles s/n, 08916 Badalona, Spain
| | - Carla Vendrell-Ayats
- ProCURE Program, Catalan Instiute of Oncology, Carretera de Can Ruti, camí de les escoles s/n, 08916 Badalona, Spain; CARE Program, Germans Trias I Pujol Research Institute (IGTP), Carretera de Can Ruti, camí de les escoles s/n, 08916 Badalona, Spain
| | - Sonia Forcales
- Serra Húnter Programme, Immunology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, c/Feixa Llarga s/n, 08917 L'Hospitalet de Llobregat, Barcelona, Spain; Group of Inflammation, Immunity and Cancer, Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), The Bellvitge Biomedical Research Institute ( IDIBELL), Hospital Duran i Reynals 3a Planta, Av. Gran Via de l'Hospitalet 199, 08908 L'Hospitalet de Llobregat, Spain.
| | - Eva Martínez-Balibrea
- ProCURE Program, Catalan Instiute of Oncology, Carretera de Can Ruti, camí de les escoles s/n, 08916 Badalona, Spain; CARE Program, Germans Trias I Pujol Research Institute (IGTP), Carretera de Can Ruti, camí de les escoles s/n, 08916 Badalona, Spain.
| |
Collapse
|
5
|
Khattab RH, Abo-Hammam RH, Salah M, Hanora AM, Shabayek S, Zakeer S. Multi-omics analysis of fecal samples in colorectal cancer Egyptians patients: a pilot study. BMC Microbiol 2023; 23:238. [PMID: 37644393 PMCID: PMC10464353 DOI: 10.1186/s12866-023-02991-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a public health concern and the second most common disease worldwide. This is due to genetic coding and is influenced by environmental aspects, in which the gut microbiota plays a significant role. The purpose of this study was to compare the microbiota makeup of CRC patients with that of healthy control and to identify upregulated and downregulated proteins and metabolites in CRC patients. Using a next-generation sequencing approach, fecal samples of five females (4 CRC patients and one healthy control) were analyzed by BGI DNBSEQ-T7, Hong Kong, China. Furthermore, proteomics and metabolomics analysis were performed using LC-MS/MS technique. RESULTS Dysbiosis of gut microbiota has been observed in patients with CRC, with an increase in microbiota diversity at all taxonomic levels relative to healthy control. Where, at the functional level the bacterial species participate in many different pathways among them de novo nucleotide synthesis and amino acids pathways were aberrantly upregulated in CRC patients. Proteomics and metabolomics profiles of CRC patients showed different proteins and metabolites, a total of 360 and 158 proteins and metabolites, respectively were highly expressed compared to healthy control with fold change ≥ 1.2. Among the highly expressed proteins were transketolase, sushi domain-containing protein, sulfide quinone oxidoreductase protein, AAA family ATPase protein, carbonic anhydrase, IgG Fc-binding protein, nucleoside diphosphate kinase protein, arylsulfatase, alkaline phosphatase protein, phosphoglycerate kinase, protein kinase domain-containing protein, non-specific serine/threonine protein kinase, Acyl-CoA synthetase and EF-hand domain-containing protein. Some of the differential metabolites, Taurine, Taurocholic acid, 7-ketodeoxycholic acid, Glycochenodeoxycholic acid, Glycocholic acid, and Taurochenodeoxycholic acid that belong to bile acids metabolites. CONCLUSIONS Some bacterial species, proteins, and metabolites could be used as diagnostic biomarkers for CRC. Our study paves an insight into using multi-omics technology to address the relationship between gut microbiota and CRC.
Collapse
Affiliation(s)
- Randa H Khattab
- Department of Microbiology and Immunology, Al-Salam University, Tanta, Egypt
| | - Rana H Abo-Hammam
- Forensic toxicologist and narcotics expert, Ministry of Justice, Tanta, Egypt
| | - Mohammed Salah
- Department of Microbiology and Immunology, Faculty of pharmacy, Port-Said University, Port-Said, Egypt
| | - Amro M Hanora
- Department of Microbiology and Immunology, Faculty of pharmacy, Suez Canal University, Ismailia, Egypt.
| | - Sarah Shabayek
- Department of Microbiology and Immunology, Faculty of pharmacy, Suez Canal University, Ismailia, Egypt
| | - Samira Zakeer
- Department of Microbiology and Immunology, Faculty of pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
6
|
Melatonin Attenuates Ropivacaine-Induced Apoptosis by Inhibiting Excessive Mitophagy Through the Parkin/PINK1 Pathway in PC12 and HT22 Cells. Inflammation 2022; 45:725-738. [PMID: 34994877 DOI: 10.1007/s10753-021-01579-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/07/2021] [Indexed: 11/05/2022]
Abstract
Melatonin, as an endogenous circadian indoleamine secreted by the pineal gland, executes extensive biological functions, including antioxidant, anti-inflammatory, anti-tumor, and neuroprotective effects. Although melatonin has been reported to serve as a potential therapeutic against many nerve injury diseases, its effect on ropivacaine-induced neurotoxicity remains obscure. Our research aimed to explore the impact and mechanism of melatonin on ropivacaine-induced neurotoxicity. Our results showed that melatonin pretreatment protected the cell viability, morphology, and apoptosis of PC12 and HT22 cells, and it also improved ropivacaine-induced mitochondrial dysfunction and the activation of mitophagy. In addition, we found that autophagy activation with rapamycin significantly weakened the protective effect of melatonin against ropivacaine-induced apoptosis, whereas autophagy inhibition with 3-MA enhanced the effect of melatonin. We also detected the activation of Parkin and PINK1, a canonical mechanism for mitophagy regulation, and results shown that melatonin downregulated the expression of Parkin and PINK1, and upregulated Tomm20 and COXIV proteins, so that those results indicated that melatonin protected ropivacaine-induced apoptosis through suppressing excessive mitophagy by inhibiting the Parkin/PINK1 pathway. Melatonin may be a useful potential therapeutic agent against ropivacaine-induced neurotoxicity.
Collapse
|
7
|
Azwar S, Seow HF, Abdullah M, Faisal Jabar M, Mohtarrudin N. Recent Updates on Mechanisms of Resistance to 5-Fluorouracil and Reversal Strategies in Colon Cancer Treatment. BIOLOGY 2021; 10:854. [PMID: 34571731 PMCID: PMC8466833 DOI: 10.3390/biology10090854] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
5-Fluorouracil (5-FU) plus leucovorin (LV) remain as the mainstay standard adjuvant chemotherapy treatment for early stage colon cancer, and the preferred first-line option for metastatic colon cancer patients in combination with oxaliplatin in FOLFOX, or irinotecan in FOLFIRI regimens. Despite treatment success to a certain extent, the incidence of chemotherapy failure attributed to chemotherapy resistance is still reported in many patients. This resistance, which can be defined by tumor tolerance against chemotherapy, either intrinsic or acquired, is primarily driven by the dysregulation of various components in distinct pathways. In recent years, it has been established that the incidence of 5-FU resistance, akin to multidrug resistance, can be attributed to the alterations in drug transport, evasion of apoptosis, changes in the cell cycle and DNA-damage repair machinery, regulation of autophagy, epithelial-to-mesenchymal transition, cancer stem cell involvement, tumor microenvironment interactions, miRNA dysregulations, epigenetic alterations, as well as redox imbalances. Certain resistance mechanisms that are 5-FU-specific have also been ascertained to include the upregulation of thymidylate synthase, dihydropyrimidine dehydrogenase, methylenetetrahydrofolate reductase, and the downregulation of thymidine phosphorylase. Indeed, the successful modulation of these mechanisms have been the game plan of numerous studies that had employed small molecule inhibitors, plant-based small molecules, and non-coding RNA regulators to effectively reverse 5-FU resistance in colon cancer cells. It is hoped that these studies would provide fundamental knowledge to further our understanding prior developing novel drugs in the near future that would synergistically work with 5-FU to potentiate its antitumor effects and improve the patient's overall survival.
Collapse
Affiliation(s)
- Shamin Azwar
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| | - Heng Fong Seow
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| | - Maha Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| | - Mohd Faisal Jabar
- Department of Surgery, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Norhafizah Mohtarrudin
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| |
Collapse
|
8
|
Kim CW, Cha JM, Kwak MS. Identification of Potential Biomarkers and Biological Pathways for Poor Clinical Outcome in Mucinous Colorectal Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13133280. [PMID: 34208938 PMCID: PMC8268122 DOI: 10.3390/cancers13133280] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 06/29/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Patients with mucinous adenocarcinoma (MAC) have been considered to have a faster disease progression than patients with traditional adenocarcinoma (TAC) in colorectal cancer (CRC). However, to date, the roles of MAC in long-term survival remain controversial due to a small sample size and the nature of its relatively rare occurrence, although it potentially represents entities with different aggressiveness and prognoses. Here, using large-scale population data, we found that the patients with the MAC subtype had a significantly worse overall survival rate and a tendency of worse disease-specific survival rate in stage II compared with the patients with the TAC subtype. Furthermore, key gene signatures were identified using the established predictive models for the disease-specific survival of stage II mucinous CRC. Abstract Colorectal cancer (CRC) comprises several histological subtypes, but the influences of the histological subtypes on prognosis remains unclear. We sought to evaluate the prognosis of mucinous adenocarcinoma (MAC), compared to that of traditional adenocarcinoma (TAC). This study used the data of patients diagnosed with CRC between 2004 and 2016, as obtained from the Surveillance, Epidemiology, and End Results database. We established a predictive model for disease-specific survival using conditional survival forest, model, non-linear Cox proportional hazards, and neural multi-task logistic regression model and identified the gene signatures for predicting poor prognosis based on the arrayexpress datasets. In total, 9096 (42.1%) patients with MAC and 12,490 (58.9%) patients with TAC were included. Those with the MAC subtype were more likely to have a poorer overall survival rate compared to those with the TAC subtype in stage II CRC (p = 0.002). The eight major genes including RPS18, RPL30, NME2, USP33, GAB2, RPS3A, RPS25, and CEP57 were found in the interacting network pathway. MAC was found to have a poorer prognosis compared to TAC, especially in Stage II CRC. In addition, our findings suggest that identifying potential biomarkers and biological pathways can be useful in CRC prognosis.
Collapse
Affiliation(s)
- Chang Woo Kim
- Department of Surgery, Ajou University College of Medicine, Suwon 16499, Korea;
| | - Jae Myung Cha
- Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, 892 Dongnam-ro, Gandong-gu, Seoul 05278, Korea;
| | - Min Seob Kwak
- Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, 892 Dongnam-ro, Gandong-gu, Seoul 05278, Korea;
- Correspondence: ; Tel.: +82-2-440-6119; Fax: +82-2-440-6295
| |
Collapse
|
9
|
Romero-Garcia S, Prado-Garcia H, Carlos-Reyes A. Role of DNA Methylation in the Resistance to Therapy in Solid Tumors. Front Oncol 2020; 10:1152. [PMID: 32850327 PMCID: PMC7426728 DOI: 10.3389/fonc.2020.01152] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the recent advances in chemotherapeutic treatments against cancer, some types of highly aggressive and invasive cancer develop drug resistance against conventional therapies, which continues to be a major problem in the fight against cancer. In recent years, studies of alterations of DNA methylome have given us a better understanding of the role of DNA methylation in the development of tumors. DNA methylation (DNAm) is an epigenetic change that promotes the covalent transfer of methyl groups to DNA. This process suppresses gene expression through the modulation of the transcription machinery access to the chromatin or through the recruitment of methyl binding proteins. DNAm is regulated mainly by DNA methyltransferases. Aberrant DNAm contributes to tumor progression, metastasis, and resistance to current anti-tumoral therapies. Aberrant DNAm may occur through hypermethylation in the promoter regions of tumor suppressor genes, which leads to their silencing, while hypomethylation in the promoter regions of oncogenes can activate them. In this review, we discuss the impact of dysregulated methylation in certain genes, which impact signaling pathways associated with apoptosis avoidance, metastasis, and resistance to therapy. The analysis of methylome has revealed patterns of global methylation, which regulate important signaling pathways involved in therapy resistance in different cancer types, such as breast, colon, and lung cancer, among other solid tumors. This analysis has provided gene-expression signatures of methylated region-specific DNA that can be used to predict the treatment outcome in response to anti-cancer therapy. Additionally, changes in cancer methylome have been associated with the acquisition of drug resistance. We also review treatments with demethylating agents that, in combination with standard therapies, seem to be encouraging, as tumors that are in early stages can be successfully treated. On the other hand, tumors that are in advanced stages can be treated with these combination schemes, which could sensitize tumor cells that are resistant to the therapy. We propose that rational strategies, which combine specific demethylating agents with conventional treatment, may improve overall survival in cancer patients.
Collapse
Affiliation(s)
- Susana Romero-Garcia
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City, Mexico
| | - Heriberto Prado-Garcia
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City, Mexico
| | - Angeles Carlos-Reyes
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City, Mexico
| |
Collapse
|
10
|
Wang J, Yu H, Yili A, Gao Y, Hao L, Aisa HA, Liu S. Identification of hub genes and potential molecular mechanisms of chickpea isoflavones on MCF-7 breast cancer cells by integrated bioinformatics analysis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:86. [PMID: 32175379 DOI: 10.21037/atm.2019.12.141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Chickpea isoflavones have been demonstrated to play an inhibitory role in breast cancer cells. In this study, we aimed to explore the mechanism of chickpea isoflavones inhibiting the formation and development of breast carcinoma through the integration of wet and dry experiments. Methods Chickpea isoflavones were added to the MCF-7 cells for 48 hours, and the subsequent morphological changes of cells were observed using an inverted microscope, while apoptosis was quantified by flow cytometry. The mRNA and LncRNA expression profiles were detected by RNA-sequencing (RNA-Seq) technology. The protein-protein interaction (PPI) network was constructed from the STRINGdb database. To identify the co-expressed long non-coding RNA and messenger RNA (lncRNA-mRNA) pairs, Pearson's correlation coefficients were calculated based on the expression value between every differentially expressed lncRNA and mRNA pair. The hub gene expression was verified by quantitative reverse transcription polymerase chain reaction (qRT-PCR), and survival analysis results were provided by The Human Protein Atlas website. Results Microscopic observation and flow cytometry results confirmed that chickpea isoflavones with a final concentration of 32.8 µg/mL could cause apoptosis of the MCF-7 cells. Transcriptome results showed that a total of 1,094 mRNAs and 378 lncRNAs were differentially expressed in isoflavone-treated cells. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment revealed that inhibition of cell proliferation was mainly due to the up-regulation of genes in the apoptosis signaling pathway and the down-regulation of genes in mRNA splicing pathway. The co-expressed genes of the top 10 down-regulated lncRNAs were mainly heterogeneous nuclear ribonucleoproteins (HNRNP) family genes, which interacted with apoptosis-related genes through ubiquitin C (UBC). The abnormal expression of 11 hub genes (degree >10) of PPI networks were beneficial to improve the overall survival time of breast cancer patients. Conclusions Our results reveal a potential mechanism for chickpea isoflavones to inhibit MCF-7 breast cancer cell proliferation and provide a reference for the development of new anti-cancer drugs used in breast cancer.
Collapse
Affiliation(s)
- Jia Wang
- College of Animal Science, Jilin University, Changchun 130062, China.,Xinjiang Tefeng Pharmaceutical Company, Ltd., Urumqi 830054, China
| | - Hao Yu
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Abulimit Yili
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yanhua Gao
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Songcai Liu
- College of Animal Science, Jilin University, Changchun 130062, China.,Five-Star Animal Health Pharmaceutical Factory of Jilin Province, Changchun 130062, China
| |
Collapse
|
11
|
Caffeine enhances the anti-tumor effect of 5-fluorouracil via increasing the production of reactive oxygen species in hepatocellular carcinoma. Med Oncol 2019; 36:97. [DOI: 10.1007/s12032-019-1323-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/15/2019] [Indexed: 01/19/2023]
|
12
|
Liang H, Xu Y, Zhang Q, Yang Y, Mou Y, Gao Y, Chen R, Chen C, Dai P. MiR-483-3p regulates oxaliplatin resistance by targeting FAM171B in human colorectal cancer cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:725-736. [PMID: 30861353 DOI: 10.1080/21691401.2019.1569530] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxaliplatin resistance limits the efficiency of treatment for colorectal cancer (CRC). Studies have shown that abnormal expression of microRNAs (miRNAs) were associated with tumorigenesis, cancer development and chemoresistance. The purpose of this study was to identify potential miRNAs related to oxaliplatin resistance in CRC cells. In this work, using small RNA sequencing (small RNA-Seq) and transcriptome sequencing (RNA-Seq), we found that down-regulated miR-483-3p was concurrent with up-regulated FAM171B in oxaliplatin-resistant colorectal cancer cell line HCT116/L as compared with its parental cell line HCT116. Transient transfection of miR-483-3p mimics markedly decreased the levels of FAM171B and restored oxaliplatin responsiveness of HCT116/L cells, and this alteration enhanced cell apoptosis and weakened cell migration. Whereas miR-483-3p inhibitor dramatically promoted the expression of FAM171B and enhanced oxaliplatin resistance of HCT116 cells by repressing cell apoptosis. Furthermore, knockdown of FAM171B in HCT116/L cells could also sensitize its reaction of the treatment with oxaliplatin, which was verified by the reduced cell migration. These findings demonstrate that FAM171B is a functional target of miR-483-3p in the regulation of oxaliplatin resistance in human CRC cells.
Collapse
Affiliation(s)
- Hui Liang
- a National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences , Northwest University , Xi'an , China
| | - Yisong Xu
- a National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences , Northwest University , Xi'an , China
| | - Qiang Zhang
- a National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences , Northwest University , Xi'an , China
| | - Yu Yang
- a National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences , Northwest University , Xi'an , China
| | - Yueyang Mou
- a National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences , Northwest University , Xi'an , China
| | - Yingchun Gao
- a National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences , Northwest University , Xi'an , China
| | - Rui Chen
- a National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences , Northwest University , Xi'an , China
| | - Chao Chen
- a National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences , Northwest University , Xi'an , China
| | - Penggao Dai
- a National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences , Northwest University , Xi'an , China
| |
Collapse
|
13
|
Xu Y, Zhang C, Liang H, Hu S, Li P, Liu L, Duan X, Chen C, Zhang Y, Dai P. Dishevelled 1, a pivotal positive regulator of the Wnt signalling pathway, mediates 5-fluorouracil resistance in HepG2 cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:192-200. [DOI: 10.1080/21691401.2018.1453827] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yisong Xu
- School of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, China
| | - Cheng Zhang
- School of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, China
| | - Hui Liang
- School of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, China
| | - Shanshuang Hu
- School of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, China
| | - Pengkun Li
- School of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, China
| | - Linna Liu
- Pharmacy Department, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| | - Xianglong Duan
- Second Department of General Surgery, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Chao Chen
- School of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, China
| | - Yani Zhang
- School of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, China
| | - Penggao Dai
- School of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, China
| |
Collapse
|