1
|
Husseini GA, Sabouni R, Puzyrev V, Ghommem M. Deep Learning for the Accurate Prediction of Triggered Drug Delivery. IEEE Trans Nanobioscience 2025; 24:102-112. [PMID: 39018211 DOI: 10.1109/tnb.2024.3426291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
The need to mitigate the adverse effects of chemotherapy has driven the exploration of innovative drug delivery approaches. One emerging trend in cancer treatment is the utilization of Drug Delivery Systems (DDSs), facilitated by nanotechnology. Nanoparticles, ranging from 1 nm to 1000 nm, act as carriers for chemotherapeutic agents, enabling precise drug delivery. The triggered release of these agents is vital for advancing this novel drug delivery system. Our research investigated this multifaceted delivery capability using liposomes and metal organic frameworks as nanocarriers and utilizing all three targeting techniques: passive, active, and triggered. Liposomes are modified using targeting ligands to render them more targeted toward certain cancers. Moieties are conjugated to the surfaces of these nanocarriers to allow for their binding to receptors overexpressed on cancer cells, thus increasing the accumulation of the agent at the tumor site. A novel class of nanocarriers, namely metal organic frameworks, has emerged, showing promise in cancer treatment. Triggering techniques (both intrinsic and extrinsic) can be used to release therapeutic agents from nanoparticles, thus enhancing the efficacy of drug delivery. In this study, we develop a predictive model combining experimental measurements with deep learning techniques. The model accurately predicts drug release from liposomes and MOFs under various conditions, including low- and high-frequency ultrasound (extrinsic triggering), microwave exposure (extrinsic triggering), ultraviolet light exposure (extrinsic triggering), and different pH levels (intrinsic triggering). The deep learning-based predictions significantly outperform linear predictions, proving the utility of advanced computational methods in drug delivery. Our findings demonstrate the potential of these nanocarriers and highlight the efficacy of deep learning models in predicting drug release behavior, paving the way for enhanced cancer treatment strategies.
Collapse
|
2
|
Abed H, Radha R, Anjum S, Paul V, AlSawaftah N, Pitt WG, Ashammakhi N, Husseini GA. Targeted Cancer Therapy-on-A-Chip. Adv Healthc Mater 2024; 13:e2400833. [PMID: 39101627 PMCID: PMC11582519 DOI: 10.1002/adhm.202400833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/15/2024] [Indexed: 08/06/2024]
Abstract
Targeted cancer therapy (TCT) is gaining increased interest because it reduces the risks of adverse side effects by specifically treating tumor cells. TCT testing has traditionally been performed using two-dimensional (2D) cell culture and animal studies. Organ-on-a-chip (OoC) platforms have been developed to recapitulate cancer in vitro, as cancer-on-a-chip (CoC), and used for chemotherapeutics development and testing. This review explores the use of CoCs to both develop and test TCTs, with a focus on three main aspects, the use of CoCs to identify target biomarkers for TCT development, the use of CoCs to test free, un-encapsulated TCTs, and the use of CoCs to test encapsulated TCTs. Despite current challenges such as system scaling, and testing externally triggered TCTs, TCToC shows a promising future to serve as a supportive, pre-clinical platform to expedite TCT development and bench-to-bedside translation.
Collapse
Affiliation(s)
- Heba Abed
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
| | - Remya Radha
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
| | - Shabana Anjum
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
| | - Vinod Paul
- Materials Science and Engineering PhD programCollege of Arts and SciencesAmerican University of SharjahSharjahUAE
| | - Nour AlSawaftah
- Materials Science and Engineering PhD programCollege of Arts and SciencesAmerican University of SharjahSharjahUAE
| | - William G. Pitt
- Department of Chemical EngineeringBrigham Young UniversityProvoUT84602USA
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME)Michigan State UniversityEast LansingMI48824USA
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095‐1600USA
| | - Ghaleb A. Husseini
- Department of Chemical and Biological EngineeringAmerican University of SharjahSharjahUAE
- Materials Science and Engineering PhD programCollege of Arts and SciencesAmerican University of SharjahSharjahUAE
| |
Collapse
|
3
|
Agam M, Paul V, Abdelgawad M, Husseini GA. Production of Targeted Estrone Liposomes Using a Herringbone Micromixer. IEEE Trans Nanobioscience 2024; 23:472-481. [PMID: 38530728 DOI: 10.1109/tnb.2024.3382203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Liposomes are spherical vesicles formed from bilayer lipid membranes that are extensively used in targeted drug delivery as nanocarriers to deliver therapeutic reagents to specific tissues and organs in the body. Recently, we have reported using estrone as an endogenous ligand on doxorubicin-encapsulating liposomes to target estrogen receptor (ER)-positive breast cancer cells. Estrone liposomes were synthesized using the thin-film hydration method, which is a long, arduous, and multistep process. Here, we report using a herringbone micromixer to synthesize estrone liposomes in a simple and rapid manner. A solvent stream containing the lipids was mixed with a stream of phosphate buffer saline (PBS) inside a microchannel integrated with herringbone-shaped ridges that enhanced the mixing of the two streams. The small scale involved enabled rapid solvent exchange and initiated the self-assembly of the lipids to form the required liposomes. The effect of different parameters on liposome size, such as the ratio between the flow rate of the solvent and the buffer solutions (FRR), total flow rate, lipid concentrations, and solvent type, were investigated. Using this commercially available chip, we obtained liposomes with a radius of 66.1 ± 11.2 nm (mean ± standard deviation) and a polydispersity of 22% in less than 15 minutes compared to a total of ∼ 11 hours using conventional techniques. Calcein was encapsulated inside the prepared liposomes as a model drug and was released by applying ultrasound at different powers. The size of the prepared liposomes was stable over a period of one month. Overall, using microfluidics to synthesize estrone liposomes simplified the procedure considerably and improved the reproducibility of the resulting liposomes.
Collapse
|
4
|
Zafar MN, Pitt WG, Husseini GA. Encapsulation and release of calcein from herceptin-conjugated eLiposomes. Heliyon 2024; 10:e27882. [PMID: 38524567 PMCID: PMC10958368 DOI: 10.1016/j.heliyon.2024.e27882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Achieving an optimal therapeutic level is crucial in effectively eradicating cancer cells during treatment. However, conventional chemotherapy-associated systemic administration of anticancer agents leads to many side effects. To achieve the desired control over the target site, active targeting of HER2-positive breast cancer cells can be achieved by conjugating liposomal vesicles with Human Epidermal growth factor Receptor 2 (HER2) and inducing release of the encapsulated drug using ultrasound. To further enhance the delivery efficiency, nanoemulsion droplets exhibiting responsiveness to low-frequency ultrasound are encapsulated within these lipid vesicles. In this study, we prepared four different liposomal formulations, namely pegylated liposomes, emulsion liposomes (eLiposomes), HER-conjugated liposomes, and HER-conjugated eLiposomes, each loaded with calcein and subjected to a thorough characterization process. Their sizes, phospholipid concentration, and amount of antibody conjugation were compared and analyzed. Cryogenic transmission electron microscopy was used to confirm the encapsulation of nanoemulsion droplets within the liposomes. The drug-releasing performance of Herceptin-conjugated eLiposomes was found to surpass that of other liposomal formulations with a notably higher calcein release and established it as a highly effective nanocarrier. The study showcases the efficacy of calcein-loaded and Herceptin-conjugated eLiposomes, which demonstrate rapid and efficient drug release among other liposomal formulations when subjected to ultrasound. This discovery paves the way for a more targeted, efficient, and humane approach to cancer therapy.
Collapse
Affiliation(s)
- Mah Noor Zafar
- Biomedical Engineering Program, College of Engineering, American University of Sharjah, Sharjah, P.O. Box. 26666, United Arab Emirates
| | - William G. Pitt
- Department of Chemical Engineering, Brigham Young University, Provo, UT, 84602, USA
| | - Ghaleb A. Husseini
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box. 26666, United Arab Emirates
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| |
Collapse
|
5
|
Cao J, Chen XY. Stable and reproducible MIP-ECL sensors for ultra-sensitive and accurate quantitative detection of Estrone. Front Bioeng Biotechnol 2024; 12:1329129. [PMID: 38405376 PMCID: PMC10893587 DOI: 10.3389/fbioe.2024.1329129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024] Open
Abstract
Estrone (E1), as an endogenous estrogen, has a variety of physiological functions in human body and is of great significance to human health. On the other hand, it is a widely distributed and highly disturbing environmental endocrine disruptor in water. Therefore, there is an urgent need to develop a sensitive, rapid, and inexpensive method for the on-site determination of E1, which is not only for clinical diagnosis and treatment, but also for the investigation and monitoring of endogenous estrogen pollution in environmental water. In this study, Ru(bpy)3 2+/MWCNTs/Nafion/gold electrodes were prepared by surface electrostatic adsorption and ion exchange. A molecularly imprinted membrane (MIP) with the capability to recognize E1 molecules was prepared by sol-gel method, and the electrodes were modified with MIP to form an electrochemical luminescence sensor (MIP-ECL). This method simultaneously possesses ECL's advantage of high sensitivity and MIP's advantage of high selectivity. Moreover, the addition of carboxylated multi-walled carbon nanotubes (MWCNT-COOH) improved the functionalization of the gold electrode surface and increased the binding sites of MIP. Meanwhile, the good conductivity of MWCNTs promoted electron transfer and further improved the sensitivity of the sensor. The sensor showed a wide linear interval in which the E1 concentrations can range from 0.1 μg/L to 200 μg/L, along with a high linear correlation coefficient (R 2 = 0.999). The linear regression equation of the sensor was Y = 243.64x-79.989, and the detection limit (LOD) was 0.0047 μg/L. To validate our sensor, actual samples were also measured by the reference method (LC-MS/MS), and it was found that the relative deviation of quantitative results of the two different methods was less than 4.1%. This indicates that the quantitative results obtained by this sensor are accurate and can be used for rapid in situ determination of E1 in clinical samples and environmental water.
Collapse
Affiliation(s)
- Jie Cao
- Scientific Research and Experiment Center, Fujian Police College, Fuzhou, China
- Fuzhou University Postdoctoral Research Station of Chemistry, Fuzhou University, Fuzhou, China
- Fujian ShiMing Judicial Expertise Center, Fujian Police College, Fuzhou, China
- Regional Counter-Terrorism Research Centre, Fujian Police College, Fuzhou, China
| | - Xiao-Ying Chen
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, China
| |
Collapse
|
6
|
Kawak P, Sawaftah NMA, Pitt WG, Husseini GA. Transferrin-Targeted Liposomes in Glioblastoma Therapy: A Review. Int J Mol Sci 2023; 24:13262. [PMID: 37686065 PMCID: PMC10488197 DOI: 10.3390/ijms241713262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 09/10/2023] Open
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumor, and its treatment is further complicated by the high selectivity of the blood-brain barrier (BBB). The scientific community is urgently seeking innovative and effective therapeutic solutions. Liposomes are a promising new tool that has shown potential in addressing the limitations of chemotherapy, such as poor bioavailability and toxicity to healthy cells. However, passive targeting strategies based solely on the physicochemical properties of liposomes have proven ineffective due to a lack of tissue specificity. Accordingly, the upregulation of transferrin receptors (TfRs) in brain tissue has led to the development of TfR-targeted anticancer therapeutics. Currently, one of the most widely adopted methods for improving drug delivery in the treatment of GBM and other neurological disorders is the utilization of active targeting strategies that specifically target this receptor. In this review, we discuss the role of Tf-conjugated liposomes in GBM therapy and present some recent studies investigating the drug delivery efficiency of Tf-liposomes; in addition, we address some challenges currently facing this approach to treatment and present some potential improvement possibilities.
Collapse
Affiliation(s)
- Paul Kawak
- Chemical and Biological Engineering Department, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
| | - Nour M. Al Sawaftah
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
| | - William G. Pitt
- Chemical Engineering Department, Brigham Young University, Provo, UT 84602, USA
| | - Ghaleb A. Husseini
- Chemical and Biological Engineering Department, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
| |
Collapse
|
7
|
Nel J, Elkhoury K, Velot É, Bianchi A, Acherar S, Francius G, Tamayol A, Grandemange S, Arab-Tehrany E. Functionalized liposomes for targeted breast cancer drug delivery. Bioact Mater 2023; 24:401-437. [PMID: 36632508 PMCID: PMC9812688 DOI: 10.1016/j.bioactmat.2022.12.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 12/25/2022] [Indexed: 01/03/2023] Open
Abstract
Despite the exceptional progress in breast cancer pathogenesis, prognosis, diagnosis, and treatment strategies, it remains a prominent cause of female mortality worldwide. Additionally, although chemotherapies are effective, they are associated with critical limitations, most notably their lack of specificity resulting in systemic toxicity and the eventual development of multi-drug resistance (MDR) cancer cells. Liposomes have proven to be an invaluable drug delivery system but of the multitudes of liposomal systems developed every year only a few have been approved for clinical use, none of which employ active targeting. In this review, we summarize the most recent strategies in development for actively targeted liposomal drug delivery systems for surface, transmembrane and internal cell receptors, enzymes, direct cell targeting and dual-targeting of breast cancer and breast cancer-associated cells, e.g., cancer stem cells, cells associated with the tumor microenvironment, etc.
Collapse
Affiliation(s)
- Janske Nel
- Université de Lorraine, LIBio, F-54000, Nancy, France
| | | | - Émilie Velot
- Université de Lorraine, CNRS, IMoPA, F-54000, Nancy, France
| | - Arnaud Bianchi
- Université de Lorraine, CNRS, IMoPA, F-54000, Nancy, France
| | - Samir Acherar
- Université de Lorraine, CNRS, LCPM, F-54000, Nancy, France
| | | | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | | | | |
Collapse
|
8
|
Aalhate M, Mahajan S, Singh H, Guru SK, Singh PK. Nanomedicine in therapeutic warfront against estrogen receptor-positive breast cancer. Drug Deliv Transl Res 2023; 13:1621-1653. [PMID: 36795198 DOI: 10.1007/s13346-023-01299-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 02/17/2023]
Abstract
Breast cancer (BC) is the most frequently diagnosed malignancy in women worldwide. Almost 70-80% of cases of BC are curable at the early non-metastatic stage. BC is a heterogeneous disease with different molecular subtypes. Around 70% of breast tumors exhibit estrogen-receptor (ER) expression and endocrine therapy is used for the treatment of these patients. However, there are high chances of recurrence in the endocrine therapy regimen. Though chemotherapy and radiation therapy have substantially improved survival rates and treatment outcomes in BC patients, there is an increased possibility of the development of resistance and dose-limiting toxicities. Conventional treatment approaches often suffer from low bioavailability, adverse effects due to the non-specific action of chemotherapeutics, and low antitumor efficacy. Nanomedicine has emerged as a conspicuous strategy for delivering anticancer therapeutics in BC management. It has revolutionized the area of cancer therapy by increasing the bioavailability of the therapeutics and improving their anticancer efficacy with reduced toxicities on healthy tissues. In this article, we have highlighted various mechanisms and pathways involved in the progression of ER-positive BC. Further, different nanocarriers delivering drugs, genes, and natural therapeutic agents for surmounting BC are the spotlights of this article.
Collapse
Affiliation(s)
- Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Hoshiyar Singh
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Santosh Kumar Guru
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
9
|
McDonald MN, Zhu Q, Paxton WF, Peterson CK, Tree DR. Active control of equilibrium, near-equilibrium, and far-from-equilibrium colloidal systems. SOFT MATTER 2023; 19:1675-1694. [PMID: 36790855 DOI: 10.1039/d2sm01447e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The development of top-down active control over bottom-up colloidal assembly processes has the potential to produce materials, surfaces, and objects with applications in a wide range of fields spanning from computing to materials science to biomedical engineering. In this review, we summarize recent progress in the field using a taxonomy based on how active control is used to guide assembly. We find there are three distinct scenarios: (1) navigating kinetic pathways to reach a desirable equilibrium state, (2) the creation of a desirable metastable, kinetically trapped, or kinetically arrested state, and (3) the creation of a desirable far-from-equilibrium state through continuous energy input. We review seminal works within this framework, provide a summary of important application areas, and present a brief introduction to the fundamental concepts of control theory that are necessary for the soft materials community to understand this literature. In addition, we outline current and potential future applications of actively-controlled colloidal systems, and we highlight important open questions and future directions.
Collapse
Affiliation(s)
- Mark N McDonald
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, USA.
| | - Qinyu Zhu
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, USA.
| | - Walter F Paxton
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Cameron K Peterson
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, Utah, USA
| | - Douglas R Tree
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, USA.
| |
Collapse
|
10
|
Responsive Nanostructure for Targeted Drug Delivery. JOURNAL OF NANOTHERANOSTICS 2023. [DOI: 10.3390/jnt4010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Currently, intelligent, responsive biomaterials have been widely explored, considering the fact that responsive biomaterials provide controlled and predictable results in various biomedical systems. Responsive nanostructures undergo reversible or irreversible changes in the presence of a stimulus, and that stimuli can be temperature, a magnetic field, ultrasound, pH, humidity, pressure, light, electric field, etc. Different types of stimuli being used in drug delivery shall be explained here. Recent research progress in the design, development and applications of biomaterials comprising responsive nanostructures is also described here. More emphasis will be given on the various nanostructures explored for the smart stimuli responsive drug delivery at the target site such as wound healing, cancer therapy, inflammation, and pain management in order to achieve the improved efficacy and sustainability with the lowest side effects. However, it is still a big challenge to develop well-defined responsive nanostructures with ordered output; thus, challenges faced during the design and development of these nanostructures shall also be included in this article. Clinical perspectives and applicability of the responsive nanostructures in the targeted drug delivery shall be discussed here.
Collapse
|
11
|
Moudgil A, Salve R, Gajbhiye V, Chaudhari BP. Challenges and emerging strategies for next generation liposomal based drug delivery: An account of the breast cancer conundrum. Chem Phys Lipids 2023; 250:105258. [PMID: 36375540 DOI: 10.1016/j.chemphyslip.2022.105258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
The global cancer burden is witnessing an upsurge with breast cancer surpassing other cancers worldwide. Furthermore, an escalation in the breast cancer caseload is also expected in the coming years. The conventional therapeutic regimens practiced routinely are associated with many drawbacks to which nanotechnological interventions offer a great advantage. But how eminent could liposomes and their advantages be in superseding these existing therapeutic modalities? A solution is reflected in this review that draws attention to a decade-long journey embarked upon by researchers in this wake. This text is a comprehensive discussion of liposomes, the front runners of the drug delivery systems, and their active and passive targeting approaches for breast cancer management. Active targeting has been studied over the decade by many receptors overexpressed on the breast cancer cells and passive targeting with many drug combinations. The results converge on the fact that the actively targeted formulations exhibit a superior efficacy over their non-targeted counterparts and the all liposomal formulations are efficacious over the free drugs. This undoubtedly underlines the dominion of liposomal formulations over conventional chemotherapy. These investigations have led to the development of different liposomal formulations with active and passive targeting capacities that could be explored in depth. Acknowledging and getting a deeper insight into the liposomal evolution through time also unveiled many imperfections and unchartered territories that can be explored to deliver dexterous liposomal formulations against breast cancer and more in the clinical trial pipeline.
Collapse
Affiliation(s)
- Aliesha Moudgil
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pashan, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Rajesh Salve
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India.
| | - Virendra Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India.
| | - Bhushan P Chaudhari
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pashan, Pune 411008, India.
| |
Collapse
|
12
|
Modeling of the In Vitro Release Kinetics of Sonosensitive Targeted Liposomes. Biomedicines 2022; 10:biomedicines10123139. [PMID: 36551895 PMCID: PMC9775332 DOI: 10.3390/biomedicines10123139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Targeted liposomes triggered by ultrasound are a promising drug delivery system as they potentially improve the clinical outcomes of chemotherapy while reducing associated side effects. In this work, a comprehensive model fitting was performed for a large dataset of liposomal release profiles with seven targeting moieties (albumin, cRGD, estrone, hyaluronic acid, Herceptin, lactobionic acid, and transferrin) in addition to the control liposomes under ultrasound release protocols. Two levels of ultrasound frequencies were tested: low frequency (20 kHz) at 6.2, 9, and 10 mW/cm2 as well as high frequencies (1.07 MHz and 3 MHz) at 10.5 and 173 W/cm2. At a low frequency, Hixson-Crowell, Korsmeyer-Peppas, Gompertz, Weibull, and Lu-Hagen showed good fits to our release profiles at all three power densities. At high frequencies, the former three models reflected the best fit. These models will aid in predicting drug release profiles for future in vitro studies.
Collapse
|
13
|
Hashemi M, Ghadyani F, Hasani S, Olyaee Y, Raei B, Khodadadi M, Ziyarani MF, Basti FA, Tavakolpournegari A, Matinahmadi A, Salimimoghadam S, Aref AR, Taheriazam A, Entezari M, Ertas YN. Nanoliposomes for doxorubicin delivery: Reversing drug resistance, stimuli-responsive carriers and clinical translation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Picheth GF, Ganzella FADO, Filizzola JO, Canquerino YK, Cardoso GC, Collini MB, Colauto LB, Figueroa-Magalhães MC, Cavalieri EA, Klassen G. Ligand-mediated nanomedicines against breast cancer: a review. Nanomedicine (Lond) 2022; 17:645-664. [PMID: 35438008 DOI: 10.2217/nnm-2021-0473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ligand-mediated targeting represents the cutting edge in precision-guided therapy for several diseases. Surface engineering of nanomedicines with ligands exhibiting selective or tailored affinity for overexpressed biomolecules of a specific disease may increase therapeutic efficiency and reduce side effects and recurrence. This review focuses on newly developed approaches and strategies to improve treatment and overcome the mechanisms associated with breast cancer resistance.
Collapse
Affiliation(s)
- Guilherme F Picheth
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil.,School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | | | - João Oc Filizzola
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Yan K Canquerino
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Gabriela C Cardoso
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Michelle B Collini
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Leonardo B Colauto
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Edneia Asr Cavalieri
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Giseli Klassen
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
15
|
Ultrasound-Triggered Liposomes Encapsulating Quantum Dots as Safe Fluorescent Markers for Colorectal Cancer. Pharmaceutics 2021; 13:pharmaceutics13122073. [PMID: 34959354 PMCID: PMC8705306 DOI: 10.3390/pharmaceutics13122073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 11/21/2022] Open
Abstract
Quantum dots (QDs) are a promising tool to detect and monitor tumors. However, their small size allows them to accumulate in large quantities inside the healthy cells (in addition to the tumor cells), which increases their toxicity. In this study, we synthesized stealth liposomes encapsulating hydrophilic graphene quantum dots and triggered their release with ultrasound with the goal of developing a safer and well-controlled modality to deliver fluorescent markers to tumors. Our results confirmed the successful encapsulation of the QDs inside the core of the liposomes and showed no effect on the size or stability of the prepared liposomes. Our results also showed that low-frequency ultrasound is an effective method to release QDs encapsulated inside the liposomes in a spatially and temporally controlled manner to ensure the effective delivery of QDs to tumors while reducing their systemic toxicity.
Collapse
|
16
|
Radha R, Al-Sayah MH. Development of Liposome-Based Immunoassay for the Detection of Cardiac Troponin I. Molecules 2021; 26:molecules26226988. [PMID: 34834080 PMCID: PMC8623906 DOI: 10.3390/molecules26226988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular diseases (CVDs) are one of the foremost causes of mortality in intensive care units worldwide. The development of a rapid method to quantify cardiac troponin I (cTnI)—the gold-standard biomarker of myocardial infarction (MI) (or “heart attack”)—becomes crucial in the early diagnosis and treatment of myocardial infarction (MI). This study investigates the development of an efficient fluorescent “sandwich” immunoassay using liposome-based fluorescent signal amplification and thereby enables the sensing and quantification of serum-cTnI at a concentration relevant to clinical settings. The calcein-loaded liposomes were utilized as fluorescent nano vehicles, and these have exhibited appropriate stability and efficient fluorescent properties. The standardized assay was sensitive and selective towards cTnI in both physiological buffer solutions and spiked human serum samples. The novel assay presented noble analytical results with sound dynamic linearity over a wide concentration range of 0 to 320 ng/mL and a detection limit of 6.5 ng/mL for cTnI in the spiked human serum.
Collapse
|
17
|
Ganesan K, Wang Y, Gao F, Liu Q, Zhang C, Li P, Zhang J, Chen J. Targeting Engineered Nanoparticles for Breast Cancer Therapy. Pharmaceutics 2021; 13:pharmaceutics13111829. [PMID: 34834243 PMCID: PMC8623926 DOI: 10.3390/pharmaceutics13111829] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/11/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer (BC) is the second most common cancer in women globally after lung cancer. Presently, the most important approach for BC treatment consists of surgery, followed by radiotherapy and chemotherapy. The latter therapeutic methods are often unsuccessful in the treatment of BC because of their various side effects and the damage incurred to healthy tissues and organs. Currently, numerous nanoparticles (NPs) have been identified and synthesized to selectively target BC cells without causing any impairments to the adjacent normal tissues or organs. Based on an exploratory study, this comprehensive review aims to provide information on engineered NPs and their payloads as promising tools in the treatment of BC. Therapeutic drugs or natural bioactive compounds generally incorporate engineered NPs of ideal sizes and shapes to enhance their solubility, circulatory half-life, and biodistribution, while reducing their side effects and immunogenicity. Furthermore, ligands such as peptides, antibodies, and nucleic acids on the surface of NPs precisely target BC cells. Studies on the synthesis of engineered NPs and their impact on BC were obtained from PubMed, Science Direct, and Google Scholar. This review provides insights on the importance of engineered NPs and their methodology for validation as a next-generation platform with preventive and therapeutic effects against BC.
Collapse
Affiliation(s)
- Kumar Ganesan
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, China; (K.G.); (Y.W.); (Q.L.)
| | - Yan Wang
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, China; (K.G.); (Y.W.); (Q.L.)
| | - Fei Gao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (F.G.); (C.Z.)
| | - Qingqing Liu
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, China; (K.G.); (Y.W.); (Q.L.)
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen 518063, China
| | - Chen Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (F.G.); (C.Z.)
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China;
| | - Jinming Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (F.G.); (C.Z.)
- Correspondence: (J.Z.); (J.C.); Tel.: +852-3917-6479 (J.C.)
| | - Jianping Chen
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, China; (K.G.); (Y.W.); (Q.L.)
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen 518063, China
- Correspondence: (J.Z.); (J.C.); Tel.: +852-3917-6479 (J.C.)
| |
Collapse
|
18
|
Mahadik N, Bhattacharya D, Padmanabhan A, Sakhare K, Narayan KP, Banerjee R. Targeting steroid hormone receptors for anti-cancer therapy-A review on small molecules and nanotherapeutic approaches. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1755. [PMID: 34541822 DOI: 10.1002/wnan.1755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022]
Abstract
The steroid hormone receptors (SHRs) among nuclear hormone receptors (NHRs) are steroid ligand-dependent transcription factors that play important roles in the regulation of transcription of genes promoted via hormone responsive elements in our genome. Aberrant expression patterns and context-specific regulation of these receptors in cancer, have been routinely reported by multiple research groups. These gave an window of opportunity to target those receptors in the context of developing novel, targeted anticancer therapeutics. Besides the development of a plethora of SHR-targeting synthetic ligands and the availability of their natural, hormonal ligands, development of many SHR-targeted, anticancer nano-delivery systems and theranostics, especially based on small molecules, have been reported. It is intriguing to realize that these cytoplasmic receptors have become a hot target for cancer selective delivery. This is in spite of the fact that these receptors do not fall in the category of conventional, targetable cell surface bound or transmembrane receptors that enjoy over-expression status. Glucocorticoid receptor (GR) is one such exciting SHR that in spite of it being expressed ubiquitously in all cells, we discovered it to behave differently in cancer cells, thus making it a truly druggable target for treating cancer. This review selectively accumulates the knowledge generated in the field of SHR-targeting as a major focus for cancer treatment with various anticancer small molecules and nanotherapeutics on progesterone receptor, mineralocorticoid receptor, and androgen receptor while selectively emphasizing on GR and estrogen receptor. This review also briefly highlights lipid-modification strategy to convert ligands into SHR-targeted cancer nanotherapeutics. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Biology-Inspired Nanomaterials > Lipid-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Namita Mahadik
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Dwaipayan Bhattacharya
- Department of Biological Sciences, Birla Institute of Technology Pilani, Hyderabad, India
| | - Akshaya Padmanabhan
- Department of Biological Sciences, Birla Institute of Technology Pilani, Hyderabad, India
| | - Kalyani Sakhare
- Department of Biological Sciences, Birla Institute of Technology Pilani, Hyderabad, India
| | - Kumar Pranav Narayan
- Department of Biological Sciences, Birla Institute of Technology Pilani, Hyderabad, India
| | - Rajkumar Banerjee
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
19
|
AlSawaftah N, Pitt WG, Husseini GA. Dual-Targeting and Stimuli-Triggered Liposomal Drug Delivery in Cancer Treatment. ACS Pharmacol Transl Sci 2021; 4:1028-1049. [PMID: 34151199 PMCID: PMC8205246 DOI: 10.1021/acsptsci.1c00066] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 12/31/2022]
Abstract
The delivery of chemotherapeutics to solid tumors using smart drug delivery systems (SDDSs) takes advantage of the unique physiology of tumors (i.e., disordered structure, leaky vasculature, abnormal extracellular matrix (ECM), and limited lymphatic drainage) to deliver anticancer drugs with reduced systemic side effects. Liposomes are the most promising of such SDDSs and have been well investigated for cancer therapy. To improve the specificity, bioavailability, and anticancer efficacy of liposomes at the diseased sites, other strategies such as targeting ligands and stimulus-sensitive liposomes have been developed. This review highlights relevant surface functionalization techniques and stimuli-mediated drug release for enhanced delivery of anticancer agents at tumor sites, with a special focus on dual functionalization and design of multistimuli responsive liposomes.
Collapse
Affiliation(s)
- Nour AlSawaftah
- Department
of Chemical Engineering, American University
of Sharjah, Sharjah, UAE
| | - William G. Pitt
- Chemical
Engineering Department, Brigham Young University, Provo, Utah 84602, United States
| | - Ghaleb A. Husseini
- Department
of Chemical Engineering, American University
of Sharjah, Sharjah, UAE
| |
Collapse
|
20
|
AlSawaftah NM, Awad NS, Paul V, Kawak PS, Al-Sayah MH, Husseini GA. Transferrin-modified liposomes triggered with ultrasound to treat HeLa cells. Sci Rep 2021; 11:11589. [PMID: 34078930 PMCID: PMC8172941 DOI: 10.1038/s41598-021-90349-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/22/2021] [Indexed: 01/23/2023] Open
Abstract
Targeted liposomes are designed to target specific receptors overexpressed on the surfaces of cancer cells. This technique ensures site-specific drug delivery to reduce undesirable side effects while enhancing the efficiency of the encapsulated therapeutics. Upon reaching the tumor site, these liposomes can be triggered to release their content in a controlled manner using ultrasound (US). In this study, drug release from pegylated calcein-loaded liposomes modified with transferrin (Tf) and triggered with US was evaluated. Low-frequency ultrasound at 20-kHz using three different power densities (6.2 mW/cm2, 9 mW/cm2 and 10 mW/cm2) was found to increase calcein release. In addition, transferrin-conjugated pegylated liposomes (Tf-PEG liposomes) were found to be more sonosensitive compared to the non-targeted (control) liposomes. Calcein uptake by HeLa cells was found to be significantly higher with the Tf-PEG liposomes compared to the non-targeted control liposomes. This uptake was further enhanced following the exposure to low-frequency ultrasound (at 35 kHz). These findings show that targeted liposomes triggered with US have promising potential as a safe and effective drug delivery platform.
Collapse
Affiliation(s)
- Nour M AlSawaftah
- Department of Chemical Engineering, American University of Sharjah, PO. Box 26666, Sharjah, UAE
| | - Nahid S Awad
- Department of Chemical Engineering, American University of Sharjah, PO. Box 26666, Sharjah, UAE
| | - Vinod Paul
- Department of Chemical Engineering, American University of Sharjah, PO. Box 26666, Sharjah, UAE
| | - Paul S Kawak
- Department of Chemical Engineering, American University of Sharjah, PO. Box 26666, Sharjah, UAE
| | - Mohammad H Al-Sayah
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, PO. Box 26666, Sharjah, UAE
| | - Ghaleb A Husseini
- Department of Chemical Engineering, American University of Sharjah, PO. Box 26666, Sharjah, UAE.
| |
Collapse
|
21
|
Awad N, Paul V, AlSawaftah NM, ter Haar G, Allen TM, Pitt WG, Husseini GA. Ultrasound-Responsive Nanocarriers in Cancer Treatment: A Review. ACS Pharmacol Transl Sci 2021; 4:589-612. [PMID: 33860189 PMCID: PMC8033618 DOI: 10.1021/acsptsci.0c00212] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Indexed: 12/13/2022]
Abstract
The safe and effective delivery of anticancer agents to diseased tissues is one of the significant challenges in cancer therapy. Conventional anticancer agents are generally cytotoxins with poor pharmacokinetics and bioavailability. Nanocarriers are nanosized particles designed for the selectivity of anticancer drugs and gene transport to tumors. They are small enough to extravasate into solid tumors, where they slowly release their therapeutic load by passive leakage or biodegradation. Using smart nanocarriers, the rate of release of the entrapped therapeutic(s) can be increased, and greater exposure of the tumor cells to the therapeutics can be achieved when the nanocarriers are exposed to certain internally (enzymes, pH, and temperature) or externally (light, magnetic field, and ultrasound) applied stimuli that trigger the release of their load in a safe and controlled manner, spatially and temporally. This review gives a comprehensive overview of recent research findings on the different types of stimuli-responsive nanocarriers and their application in cancer treatment with a particular focus on ultrasound.
Collapse
Affiliation(s)
- Nahid
S. Awad
- Department
of Chemical Engineering, American University
of Sharjah, Sharjah, United Arab Emirates
| | - Vinod Paul
- Department
of Chemical Engineering, American University
of Sharjah, Sharjah, United Arab Emirates
| | - Nour M. AlSawaftah
- Department
of Chemical Engineering, American University
of Sharjah, Sharjah, United Arab Emirates
| | - Gail ter Haar
- Joint
Department of Physics, The Institute of
Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG, U.K.
| | - Theresa M. Allen
- Department
of Pharmacology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - William G. Pitt
- Department
of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Ghaleb A. Husseini
- Department
of Chemical Engineering, American University
of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
22
|
Kunjiappan S, Pavadai P, Vellaichamy S, Ram Kumar Pandian S, Ravishankar V, Palanisamy P, Govindaraj S, Srinivasan G, Premanand A, Sankaranarayanan M, Theivendren P. Surface receptor‐mediated targeted drug delivery systems for enhanced cancer treatment: A state‐of‐the‐art review. Drug Dev Res 2020; 82:309-340. [DOI: 10.1002/ddr.21758] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Selvaraj Kunjiappan
- Department of Biotechnology Kalasalingam Academy of Research and Education Krishnankoil Tamilnadu India
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy M.S. Ramaiah University of Applied Sciences Bengaluru Karnataka India
| | - Sivakumar Vellaichamy
- Department of Pharmaceutics Arulmigu Kalasalingam College of Pharmacy Krishnankoil Tamilnadu India
| | | | | | - Ponnusamy Palanisamy
- School of Mechanical Engineering Vellore Institute of Technology Vellore Tamilnadu India
| | - Saravanan Govindaraj
- Department of Pharmaceutical Chemistry MNR College of Pharmacy Sangareddy Telangana India
| | - Gowshiki Srinivasan
- Department of Biotechnology Kalasalingam Academy of Research and Education Krishnankoil Tamilnadu India
| | - Adhvitha Premanand
- Department of Biotechnology Kalasalingam Academy of Research and Education Krishnankoil Tamilnadu India
| | | | - Panneerselvam Theivendren
- Department of Pharmaceutical Chemistry Swamy Vivekananda College of Pharmacy Elayampalayam, Namakkal Tamilnadu India
| |
Collapse
|
23
|
Mahmoudi R, Ashraf Mirahmadi-Babaheidri S, Delaviz H, Fouani MH, Alipour M, Jafari Barmak M, Christiansen G, Bardania H. RGD peptide-mediated liposomal curcumin targeted delivery to breast cancer cells. J Biomater Appl 2020; 35:743-753. [PMID: 32807016 DOI: 10.1177/0885328220949367] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this study, turmeric's active ingredient (Curcumin) was encapsulated into RGD modified Liposomes (RGD-Lip-Cur) its cytotoxic effect on the breast cancer cell line (MCF-7) was evaluated by MTT, flow cytometry and Caspase assay. Liposomes were characterized using transmission electron microscopy (TEM). Results demonstrated that the liposomes were spherical in shape, ranging from 70 to 100 nm. MTT assay revealed that RGD-Lip-Cur had a significant cytotoxic effect on MCF-7 cells at concentrations of 32, 16 and 4 μg/ml compared to Lip-Cur (P < 0.05) and curcumin (P < 0.01). The apoptosis assay demonstrated that RGD-Lip-Cur induces the apoptosis in MCF-7 cells (39.6% vs 40.2% for initial and secondary apoptosis) significantly more than Lip-Cur (67.7% vs 9.16% for initial and secondary apoptosis) and free curcumin (7.84% vs 38.8% for initial and secondary apoptosis). Moreover, caspase assay showed that RGD-Lip-Cur activates caspase 3/7 compared to Lip-Cur (P < 0.05) and free curcumin (P < 0.01). The RGD-Lip-Cur was similar to the control group and had no significant cytotoxicity effect. It is concluded that RGD-Lip-Cur as a novel carrier have high cytotoxicity effect on breast cancer cell line (MCF-7).
Collapse
Affiliation(s)
- Reza Mahmoudi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Hamdollah Delaviz
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohamad Hassan Fouani
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Alipour
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mehrzad Jafari Barmak
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Medicinal Plant Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Clinical Research Development Unit, Imamsajad Hospital, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
24
|
Gadag S, Sinha S, Nayak Y, Garg S, Nayak UY. Combination Therapy and Nanoparticulate Systems: Smart Approaches for the Effective Treatment of Breast Cancer. Pharmaceutics 2020; 12:E524. [PMID: 32521684 PMCID: PMC7355786 DOI: 10.3390/pharmaceutics12060524] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer has become one of the biggest concerns for oncologists in the past few decades because of its unpredictable etiopathology and nonavailability of personalized translational medicine. The number of women getting affected by breast cancer has increased dramatically, owing to lifestyle and environmental changes. Besides, the development of multidrug resistance has become a challenge in the therapeutic management of breast cancer. Studies reveal that the use of monotherapy is not effective in the management of breast cancer due to high toxicity and the development of resistance. Combination therapies, such as radiation therapy with adjuvant therapy, endocrine therapy with chemotherapy, and targeted therapy with immunotherapy, are found to be effective. Thus, multimodal and combination treatments, along with nanomedicine, have emerged as a promising strategy with minimum side effects and drug resistance. In this review, we emphasize the multimodal approaches and recent advancements in breast cancer treatment modalities, giving importance to the current data on clinical trials. The novel treatment approach by targeted therapy, according to type, such as luminal, HER2 positive, and triple-negative breast cancer, are discussed. Further, passive and active targeting technologies, including nanoparticles, bioconjugate systems, stimuli-responsive, and nucleic acid delivery systems, including siRNA and aptamer, are explained. The recent research exploring the role of nanomedicine in combination therapy and the possible use of artificial intelligence in breast cancer therapy is also discussed herein. The complexity and dynamism of disease changes require the constant upgrading of knowledge, and innovation is essential for future drug development for treating breast cancer.
Collapse
Affiliation(s)
- Shivaprasad Gadag
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.G.); (S.S.)
| | - Shristi Sinha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.G.); (S.S.)
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Sanjay Garg
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Usha Y. Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.G.); (S.S.)
| |
Collapse
|
25
|
Raveendran R, Chen F, Kent B, Stenzel MH. Estrone-Decorated Polyion Complex Micelles for Targeted Melittin Delivery to Hormone-Responsive Breast Cancer Cells. Biomacromolecules 2020; 21:1222-1233. [DOI: 10.1021/acs.biomac.9b01681] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Radhika Raveendran
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney NSW, Australia
| | - Fan Chen
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney NSW, Australia
| | - Ben Kent
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney NSW, Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney NSW, Australia
| |
Collapse
|
26
|
Wadi A, Abdel-Hafez M, Husseini GA, Paul V. Multi-Model Investigation and Adaptive Estimation of the Acoustic Release of a Model Drug From Liposomes. IEEE Trans Nanobioscience 2019; 19:68-77. [PMID: 31714230 DOI: 10.1109/tnb.2019.2950344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This paper researches a suitable mathematical model that can reliably predict the release of a model drug (namely calcein) from biologically targeted liposomal nanocarriers triggered by ultrasound. Using mathematical models, curve fitting is performed on a set of five experimental acoustic drug release runs from Albumin-, Estrone-, and RGD-based Drug Delivery Systems (DDS). The three moieties were chosen to target specific cancers using receptor-mediated endocytosis. The best-fitting mathematical model is then enhanced using a Kalman filtering (KF) algorithm to account for the statistics of the dynamic and measurements noise sequences in predicted drug release. Unbiased drug-release estimates are realized by implementing an online noise identification algorithm. The algorithm is first deployed in a simulated environment in which it was rigorously tested and compared with the correct solution. Then, the algorithm was used to process the five experimental datasets. The results suggest that the Adaptive Kalman Filter (AKF) is exceptionally good at handling drug release estimation problems with a priori unknown or with changing noise covariances. In comparison with the KF, the AKF approach exhibited as low as a 69% reduction in the level of error in estimating the drug release state. Finally, the proposed algorithm is not computationally demanding and is capable of online estimation tasks.
Collapse
|
27
|
Basha SA, Salkho N, Dalibalta S, Husseini GA. Liposomes in Active, Passive and Acoustically-Triggered Drug Delivery. Mini Rev Med Chem 2019; 19:961-969. [PMID: 30961495 DOI: 10.2174/1389557519666190408155251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/17/2018] [Accepted: 11/06/2018] [Indexed: 12/23/2022]
Abstract
Cancer has become one of the most deadly noncommunicable diseases globally. Several modalities used to treat cancer patients exist today yet many have failed to prove high efficacy with low side effects. The most common example of such modalities is the use of chemotherapeutic drugs to treat cancerous cells and deter their uncontrolled proliferation. In addition to the destruction of cancerous tissues, chemotherapy destroys healthy tissues as it lacks the specificity to annihilate cancerous cells only and preferentially, which result in adverse side effects including nausea, hair fall and myocardial infarction. To prevent the side effects of non-selective chemotherapy, cancer therapy research has been focused on the implementation of nanocarrier systems that act as vehicles to encapsulate drugs and selectively transport their agent to the tumor site. In this paper, we shed light on liposomes along with three anticancer drug delivery approaches: passive, active and ultrasound-triggered drug delivery.
Collapse
Affiliation(s)
- Sara Al Basha
- Department of Chemistry, Biology and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Najla Salkho
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Sarah Dalibalta
- Department of Chemistry, Biology and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Ghaleb Adnan Husseini
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
28
|
Awad NS, Paul V, Mahmoud MS, Al Sawaftah NM, Kawak PS, Al Sayah MH, Husseini GA. Effect of Pegylation and Targeting Moieties on the Ultrasound-Mediated Drug Release from Liposomes. ACS Biomater Sci Eng 2019; 6:48-57. [PMID: 33463192 DOI: 10.1021/acsbiomaterials.8b01301] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The use of targeted liposomes encapsulating chemotherapy drugs enhances the specific targeting of cancer cells, thus reducing the side effects of these drugs and providing patient-friendly chemotherapy treatment. Targeted pegylated (stealth) liposomes have the ability to safely deliver their loaded drugs to the cancer cells by targeting specific receptors overly expressed on the surface of these cells. Applying ultrasound as an external stimulus will safely trigger drug release from these liposomes in a controlled manner. In this study, we investigated the release kinetics of the model drug "calcein" from targeted liposomes sonicated with low-frequency ultrasound (20 kHz). Our results showed that pegylated liposomes were more sonosensitive compared to nonpegylated liposomes. A comparison of the effect of three targeting moieties conjugated to the surface of pegylated liposomes, namely human serum albumin (HSA), transferrin (Tf) and arginylglycylaspartic acid (RGD), on calcein release kinetics was conducted. The fluorescent results showed that HSA-PEG and Tf-PEG liposomes were more sonosensitive (showing higher calcein release following the exposure to pulsed LFUS) compared to the control pegylated liposomes, thus adding more acoustic benefits to their targeting efficacy.
Collapse
|
29
|
Zhang L, Li H, Zang Y, Wang F. NLRP3 inflammasome inactivation driven by miR‑223‑3p reduces tumor growth and increases anticancer immunity in breast cancer. Mol Med Rep 2019; 19:2180-2188. [PMID: 30747211 PMCID: PMC6390045 DOI: 10.3892/mmr.2019.9889] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 11/07/2018] [Indexed: 12/21/2022] Open
Abstract
MicroRNA‑233‑3p (miR‑223‑3p) is considered an important cancer‑associated marker. The NACHT, LRR and PYD domains‑containing protein 3 (NLRP3) inflammasome represents a novel potential target for the treatment of breast cancer. Therefore, it was hypothesized that miR‑223‑3p may affect tumor growth and immunosuppression in breast cancer by inhibiting the NLRP3 inflammasome. In the present study, an increased expression level of NLRP3 was detected in three breast cancer cell lines compared with normal mammary epithelial cells (HMEC). Suppressing the expression of NLRP3 in MCF‑7 cell lines increased the apoptotic rate of breast cancer cells and reduced the proliferative capacity. NLRP3 was identified to be a direct target of miR‑233‑3p using a luciferase assay. In addition, miR‑233‑3p mimics inhibited the NLRP3‑dependent processes in cancer cells by suppressing the NLRP3 expression level and the protein expression levels of its downstream factors, including PYD and CARD domain containing protein, interleukin‑1β and interleukin‑18. In vivo experiments demonstrated the suppressive effect of miR‑233‑3p in tumor growth and immunosuppression. Collectively these findings suggested that the inactivation of the NLRP3 inflammasome driven by miR‑223‑3p reduced the growth and immunosuppression of breast cancer in vitro and in vivo, and may represent a novel therapeutic strategy in treating breast cancer.
Collapse
Affiliation(s)
- Liping Zhang
- Department of Breast Disease, Linyi Central Hospital, Linyi, Shandong 276499, P.R. China
| | - Hongzhi Li
- Department of Emergency Surgery, Linyi Central Hospital, Linyi, Shandong 276499, P.R. China
| | - Yuwei Zang
- Department of Radiology, Yishui People's Hospital, Linyi, Shandong 276428, P.R. China
| | - Feng Wang
- Department of Breast Disease, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
30
|
Kutova OM, Guryev EL, Sokolova EA, Alzeibak R, Balalaeva IV. Targeted Delivery to Tumors: Multidirectional Strategies to Improve Treatment Efficiency. Cancers (Basel) 2019; 11:E68. [PMID: 30634580 PMCID: PMC6356537 DOI: 10.3390/cancers11010068] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 12/13/2022] Open
Abstract
Malignant tumors are characterized by structural and molecular peculiarities providing a possibility to directionally deliver antitumor drugs with minimal impact on healthy tissues and reduced side effects. Newly formed blood vessels in malignant lesions exhibit chaotic growth, disordered structure, irregular shape and diameter, protrusions, and blind ends, resulting in immature vasculature; the newly formed lymphatic vessels also have aberrant structure. Structural features of the tumor vasculature determine relatively easy penetration of large molecules as well as nanometer-sized particles through a blood⁻tissue barrier and their accumulation in a tumor tissue. Also, malignant cells have altered molecular profile due to significant changes in tumor cell metabolism at every level from the genome to metabolome. Recently, the tumor interaction with cells of immune system becomes the focus of particular attention, that among others findings resulted in extensive study of cells with preferential tropism to tumor. In this review we summarize the information on the diversity of currently existing approaches to targeted drug delivery to tumor, including (i) passive targeting based on the specific features of tumor vasculature, (ii) active targeting which implies a specific binding of the antitumor agent with its molecular target, and (iii) cell-mediated tumor targeting.
Collapse
Affiliation(s)
- Olga M Kutova
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
| | - Evgenii L Guryev
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
| | - Evgeniya A Sokolova
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
| | - Razan Alzeibak
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
| | - Irina V Balalaeva
- The Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia.
- The Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya str., Moscow 119991, Russia.
| |
Collapse
|