1
|
Al-Harbi SA, Almulaiky YQ. Copper-based metal-organic frameworks (BDC-Cu MOFs) as supporters for α-amylase: Stability, reusability, and antioxidant potential. Heliyon 2024; 10:e28396. [PMID: 38560692 PMCID: PMC10979214 DOI: 10.1016/j.heliyon.2024.e28396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Copper-based metal-organic frameworks (BDC-Cu MOFs) were synthesized via a casting approach using 1,4-benzene dicarboxylic (BDC) as organic ligand and their properties characterized. The obtained materials were then utilized to immobilize the α-amylase enzyme. The chemical composition and functional components of the synthesized support (BDC-Cu MOFs) were investigated with Fourier transform infrared spectroscopy (FTIR), the surface morphology was determined with scanning electron microscopy (SEM), and the elemental composition was established with energy dispersive X-ray (EDX) analyses. X-ray diffraction (XRD) was employed to analyze the crystallinity of the synthesized DBC-Cu MOFs. The zeta potentials of DBC-Cu MOFs and DBC-Cu MOFs@α-amylase were determined. The immobilized α-amylase demonstrated improved catalytic activity and reusability compared to the free form. Covalent attachment of the α-amylase to BDC-Cu provided an immobilization yield (IY%) of 81% and an activity yield (AY%) of 89%. The immobilized α-amylase showed high catalytic activity and 81% retention even after ten cycles. Storage at 4 °C for eight weeks resulted in a 78% activity retention rate for DBC-Cu MOFs@α-amylase and 49% retention for the free α-amylase. The optimum activity occurred at 60 °C for the immobilized form, whereas the free form showed optimal activity at 50 °C. The free and immobilized α-amylase demonstrated peak catalytic activities at pH 6.0. The maximum reaction velocities (Vmax) values were 0.61 U/mg of protein for free α-amylase and 0.37 U/mg of protein for BDC-Cu MOFs@α-amylase, while the Michaelis‒Menten affinity constants (Km) value was lower for the immobilized form (5.46 mM) than for the free form (11.67 mM). Treatments of maize flour and finger millet samples with free and immobilized α-amylase resulted in increased total phenolic contents. The enhanced antioxidant activities of the treated samples were demonstrated with decreased IC50 values in ABTS and DPPH assays. Overall, immobilization of α-amylase on BDC-Cu MOFs provided improved stability and catalytic activity and enhanced the antioxidant potentials of maize flour and finger millet.
Collapse
Affiliation(s)
- Sami A Al-Harbi
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Yaaser Q Almulaiky
- Department of Chemistry, Collage of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
- Chemistry Department, Faculty of Applied Science, Taiz University, Taiz, Yemen
| |
Collapse
|
2
|
A rational approach for 3D recognition and removal of L-asparagine via molecularly imprinted membranes. J Pharm Biomed Anal 2023; 226:115250. [PMID: 36657352 DOI: 10.1016/j.jpba.2023.115250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
In this study, a L-asparagine (L-Asn) imprinted membranes (L-Asn-MIPs) were synthesized via molecular imprinting for selective and efficient removal of L-Asn. The L-Asn-MIP membrane was prepared by using acrylamide (AAm) and hydroxyethyl methacrylate (HEMA) as a functional monomer and a comonomer, respectively. The membrane was characterized by scanning electron microscopy (SEM) and Fourier Transform infrared spectroscopy (FTIR). The L-Asn adsorption capacity of the membrane was investigated in detail. The maximum L-Asn adsorption capacity was determined as 408.2 mg/g at pH: 7.2, 24 °C. Determination of L-Asn binding behaviors of L-Asn-MIPs also shown with Scatchard analyses. The effect of pH on L-Asn adsorption onto the membrane and also the selectivity and reusability of the L-Asn-MIPs for L-Asn adsorption were determined through L-asparaginase (L-ASNase) enzyme activity measurements. The selectivity of the membrane was investigated by using two different ternary mixtures; L-glycine (L-Gly)/L-histidine (L-His)/L-Asn and L-tyrosin (L-Tyr)/L-cystein(L-Cys)/L-Asn. The obtained results showed that the L-Asn-MIP membranes have a high selectivity towards L-Asn.
Collapse
|
3
|
Bulka NR, Barbosa-Tessmann IP. Characterization of an Amylolytic Enzyme from Massilia timonae of the GH13_19 Subfamily with Mixed Maltogenic and CGTase Activity. Appl Biochem Biotechnol 2023; 195:2028-2056. [PMID: 36401066 DOI: 10.1007/s12010-022-04226-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/20/2022]
Abstract
This work reports the characterization of an amylolytic enzyme from the bacteria Massilia timonae CTI-57. A gene encoding this protein was expressed from the pTrcHis2B plasmid in Escherichia coli BL21 Star™ (DE3). The purified protein had 64 kDa, and its modeled structure showed a monomer with the conserved α-amylases structure composed of the domain A with the characteristic (β/α)8-barrel, the small domain B, and the domain C with an antiparallel beta-sheet. Phylogenetic analysis demonstrated that the expressed protein belongs to the GH13_19 subfamily of glycoside hydrolases. The ions Ca2+, Mn2+, Na+, Mg2+, Mo6+, and K+ did activate the purified enzyme, while EDTA and the ions Fe2+, Hg2+, Zn2+, and Cu2+ were strong inhibitors. SDS was also a strong inhibitor. The enzyme's optimal pH and temperature were 7.0 and 45 °C, respectively, and its Tm was 62.2 °C. The KM of the purified enzyme for starch was 13 mg/mL, and the Vmax was 0.24 μmol of reducing sugars released per min. The characterized enzyme presented higher specificity for maltodextrin and starch and produced maltose as the main starch hydrolysis product. This is the first characterized maltose-forming amylolytic enzyme from the GH13_19 subfamily. The purified enzyme produced β-cyclodextrin from starch and maltodextrin and could be considered a cyclodextrin glucanotransferase (CGTase). This is the first report of a GH13_19 subfamily enzyme with CGTase activity.
Collapse
Affiliation(s)
- Nathalia Rodrigues Bulka
- Department of Biochemistry, State University of Maringá, Av. Colombo, 5790, Maringá, PR, 87020-900, Brazil
| | | |
Collapse
|
4
|
Investigation into the chemical modification of α-amylase using octenyl succinic anhydride: enzyme characterisation and stability studies. Bioprocess Biosyst Eng 2023; 46:645-664. [PMID: 36826507 DOI: 10.1007/s00449-023-02850-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/01/2023] [Indexed: 02/25/2023]
Abstract
The present study describes the chemical modification of α-amylase using succinic anhydride (SA), phthalic anhydride (PA) and a novel modifier viz. 2-octenyl succinic anhydride (2-OSA). SA-, PA- and 2-OSA-α-amylases displayed a 50%, 91% and 46% increase in stability at pH 9, respectively; as compared to unmodified α-amylase. PA-α-amylase showed a significant increase in Ea and ΔHa#, and a concomitant decrease in ΔSa#. The modified α-amylases exhibited improved thermostability as reflected by significant reductions in Kd and ΔSd#, and increments in t1/2, D-, Ed, ΔHd# and ΔGd# values. The modified α-amylases displayed variable stabilities in the presence of different surfactants, inhibitors, metal ions and organic solvents. Interestingly, the chemical modification was found to confer resistance against inactivation by Hg2+ on α-amylase. The conformational changes in modified α-amylases were investigated using intrinsic tryptophan fluorescence, ANS (extrinsic) tryptophan fluorescence, and dynamic fluorescence quenching. Both intrinsic and extrinsic tryptophan fluorescence spectra showed increased fluorescence intensity for the modified α-amylases. Chemical modification was found to induce a certain degree of structural rigidity to α-amylase, as shown by dynamic fluorescence quenching. Analysis of the CD spectra by the K2d method using the DichroWeb online tool indicated evident changes in the α-helix, β-sheet and random coil fractions of the α-amylase secondary structure, following chemical modification using anhydrides. PA-α-amylase exhibited the highest productivity in terms of hydrolysis of starch at 60 °C over a period of 5 h indicating potential in varied biotechnological applications.
Collapse
|
5
|
Acet Ö, Dikici E, Acet BÖ, Odabaşı M, Mijakovic I, Pandit S. Inhibition of bacterial adhesion by epigallocatechin gallate attached polymeric membranes. Colloids Surf B Biointerfaces 2022; 221:113024. [DOI: 10.1016/j.colsurfb.2022.113024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/22/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022]
|
6
|
Detection of N-hexanoyl-L-homoserine lactone via MIP-based QCM sensor: preparation and characterization. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Kaur M, Kaushal R. Synthesis and in-silico molecular modelling, DFT studies, antiradical and antihyperglycemic activity of novel vanadyl complexes based on chalcone derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
8
|
Zhang Y, Qi X, Yao S, Gao S, Xu S, Wang H, Liu X, An Y. Construction of novel curdlan-based and Ca 2+-chelated magnetic microspheres (CCMM) for efficient protein purification and oriented immobilization. Enzyme Microb Technol 2021; 148:109802. [PMID: 34116763 DOI: 10.1016/j.enzmictec.2021.109802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/12/2021] [Accepted: 04/09/2021] [Indexed: 11/30/2022]
Abstract
In this study, curdlan-based and calcium ion (Ca2+)-chelated magnetic microspheres (CCMM) were prepared for protein purification and oriented immobilization. Additional purification steps before immobilization were not required. CCMM samples were produced by reverse embedding of Fe3O4 nanoparticles with curdlan and chelated with Ca2+ in the presence of iminodiacetic acid. The β-xylanase XynII from Trichoderma reesei QM6a was used to investigate the efficiency of CCMM preparation. The resulting CCMM-XynII was found to be very stable, showing 82 % and 60 % of initial activities after storage for 35 days and after being assayed ten times, respectively. In addition, the CCMM-XynII showed higher stabilities in the presence of organic solvents and multiple chemicals than the free XynII, suggesting that the CCMM-XynII could be efficient for applications requiring the presence of organic solvents. In addition, CCMM may be more suitable than commercially available Ni-NTA for purification of proteins intolerant of Ni2+.
Collapse
Affiliation(s)
- Yifeng Zhang
- College of Food Science, Shenyang Agricultural University, No.120 Dongling Road, Shenyang, 110161, China; College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China.
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.
| | - Shuo Yao
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China.
| | - Song Gao
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China.
| | - Shumin Xu
- College of Food Science, Shenyang Agricultural University, No.120 Dongling Road, Shenyang, 110161, China; College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China.
| | - Hongling Wang
- College of Food Science, Shenyang Agricultural University, No.120 Dongling Road, Shenyang, 110161, China; College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China.
| | - Xia Liu
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China.
| | - Yingfeng An
- College of Food Science, Shenyang Agricultural University, No.120 Dongling Road, Shenyang, 110161, China; College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
9
|
α-Amylase Immobilized Composite Cryogels: Some Studies on Kinetic and Adsorption Factors. Appl Biochem Biotechnol 2021; 193:2483-2496. [PMID: 33779933 DOI: 10.1007/s12010-021-03559-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Stability of enzymes is a significant factor for their industrial feasibility. α-Amylase is an important enzyme for some industries, i.e., textile, food, paper, and pharmaceutics. Pumice particles (PPa) are non-toxic, natural, and low-cost alternative adsorbents with high adsorption capacity. In this study, Cu2+ ions were attached to pumice particles (Cu2+-APPa). Then, Cu2+-APPa embedded composite cryogel was synthesized (Cu2+-APPaC) via polymerization of gel-forming agents at minus temperatures. Characterization studies of the Cu2+-APPaC cryogel column were performed by X-ray fluorescence spectrometry (XRF), scanning electron microscopy (SEM), and Brunauer, Emmett, Teller (BET) method. The experiments were carried out in a continuous column system. α-Amylase was adsorbed onto Cu2+-APPaC cryogel with maximum amount of 858.7 mg/g particles at pH 4.0. Effects of pH and temperature on the activity profiles of the free and the immobilized α-amylase were investigated, and results indicate that immobilization did not alter the optimum pH and temperature values. kcat value of the immobilized α-amylase is higher than that of the free α-amylase while KM value increases by immobilization. Storage and operational stabilities of the free and the immobilized α-amylase were determined for 35 days and for 20 runs, respectively.
Collapse
|
10
|
|
11
|
Önal B, Odabaşı M. Design and application of a newly generated bio/synthetic cryogel column for DNA capturing. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03387-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Assessment of a new dual effective combo polymer structure for separation of lysozyme from hen egg white. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-019-02959-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Noma SAA, Ulu A, Acet Ö, Sanz R, Sanz-Pérez ES, Odabaşı M, Ateş B. Comparative study of ASNase immobilization on tannic acid-modified magnetic Fe3O4/SBA-15 nanoparticles to enhance stability and reusability. NEW J CHEM 2020. [DOI: 10.1039/d0nj00127a] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Herein, we report the preparation of tannic acid-modified magnetic Fe3O4/SBA-15 nanoparticles and their application as a carrier matrix for immobilization of ASNase, an anticancer enzyme-drug.
Collapse
Affiliation(s)
| | - Ahmet Ulu
- Department of Chemistry
- Faculty of Arts and Science
- İnönü University
- Malatya
- Turkey
| | - Ömür Acet
- Aksaray University
- Faculty of Arts and Science
- Chemistry Department
- Aksaray
- Turkey
| | - Raúl Sanz
- Department of Chemical and Environmental Technology
- ESCET
- Universidad Rey Juan Carlos
- 28933 Móstoles
- Spain
| | - Eloy S. Sanz-Pérez
- Department of Chemical, Energy, and Mechanical Technology
- ESCET
- Universidad Rey Juan Carlos
- 28933 Móstoles
- Spain
| | - Mehmet Odabaşı
- Aksaray University
- Faculty of Arts and Science
- Chemistry Department
- Aksaray
- Turkey
| | - Burhan Ateş
- Department of Chemistry
- Faculty of Arts and Science
- İnönü University
- Malatya
- Turkey
| |
Collapse
|