1
|
Nagar N, Naidu G, Mishra A, Poluri KM. Protein-Based Nanocarriers and Nanotherapeutics for Infection and Inflammation. J Pharmacol Exp Ther 2024; 388:91-109. [PMID: 37699711 DOI: 10.1124/jpet.123.001673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/04/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
Infectious and inflammatory diseases are one of the leading causes of death globally. The status quo has become more prominent with the onset of the coronavirus disease 2019 (COVID-19) pandemic. To combat these potential crises, proteins have been proven as highly efficacious drugs, drug targets, and biomarkers. On the other hand, advancements in nanotechnology have aided efficient and sustained drug delivery due to their nano-dimension-acquired advantages. Combining both strategies together, the protein nanoplatforms are equipped with the advantageous intrinsic properties of proteins as well as nanoformulations, eloquently changing the field of nanomedicine. Proteins can act as carriers, therapeutics, diagnostics, and theranostics in their nanoform as fusion proteins or as composites with other organic/inorganic materials. Protein-based nanoplatforms have been extensively explored to target the major infectious and inflammatory diseases of clinical concern. The current review comprehensively deliberated proteins as nanocarriers for drugs and nanotherapeutics for inflammatory and infectious agents, with special emphasis on cancer and viral diseases. A plethora of proteins from diverse organisms have aided in the synthesis of protein-based nanoformulations. The current study specifically presented the proteins of human and pathogenic origin to dwell upon the field of protein nanotechnology, emphasizing their pharmacological advantages. Further, the successful clinical translation and current bottlenecks of the protein-based nanoformulations associated with the infection-inflammation paradigm have also been discussed comprehensively. SIGNIFICANCE STATEMENT: This review discusses the plethora of promising protein-based nanocarriers and nanotherapeutics explored for infectious and inflammatory ailments, with particular emphasis on protein nanoparticles of human and pathogenic origin with reference to the advantages, ADME (absorption, distribution, metabolism, and excretion parameters), and current bottlenecks in development of protein-based nanotherapeutic interventions.
Collapse
Affiliation(s)
- Nupur Nagar
- Department of Biosciences and Bioengineering (N.N., G.N., K.M.P.) and Centre for Nanotechnology (K.M.P.), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; and Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India (A.M.)
| | - Goutami Naidu
- Department of Biosciences and Bioengineering (N.N., G.N., K.M.P.) and Centre for Nanotechnology (K.M.P.), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; and Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India (A.M.)
| | - Amit Mishra
- Department of Biosciences and Bioengineering (N.N., G.N., K.M.P.) and Centre for Nanotechnology (K.M.P.), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; and Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India (A.M.)
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering (N.N., G.N., K.M.P.) and Centre for Nanotechnology (K.M.P.), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; and Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India (A.M.)
| |
Collapse
|
2
|
Drvenica IT, Stančić AZ, Maslovarić IS, Trivanović DI, Ilić VL. Extracellular Hemoglobin: Modulation of Cellular Functions and Pathophysiological Effects. Biomolecules 2022; 12:1708. [PMID: 36421721 PMCID: PMC9688122 DOI: 10.3390/biom12111708] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 08/05/2023] Open
Abstract
Hemoglobin is essential for maintaining cellular bioenergetic homeostasis through its ability to bind and transport oxygen to the tissues. Besides its ability to transport oxygen, hemoglobin within erythrocytes plays an important role in cellular signaling and modulation of the inflammatory response either directly by binding gas molecules (NO, CO, and CO2) or indirectly by acting as their source. Once hemoglobin reaches the extracellular environment, it acquires several secondary functions affecting surrounding cells and tissues. By modulating the cell functions, this macromolecule becomes involved in the etiology and pathophysiology of various diseases. The up-to-date results disclose the impact of extracellular hemoglobin on (i) redox status, (ii) inflammatory state of cells, (iii) proliferation and chemotaxis, (iv) mitochondrial dynamic, (v) chemoresistance and (vi) differentiation. This review pays special attention to applied biomedical research and the use of non-vertebrate and vertebrate extracellular hemoglobin as a promising candidate for hemoglobin-based oxygen carriers, as well as cell culture medium additive. Although recent experimental settings have some limitations, they provide additional insight into the modulatory activity of extracellular hemoglobin in various cellular microenvironments, such as stem or tumor cells niches.
Collapse
Affiliation(s)
- Ivana T. Drvenica
- Group for Immunology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
| | - Ana Z. Stančić
- Group for Immunology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
| | - Irina S. Maslovarić
- Group for Immunology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
| | - Drenka I. Trivanović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
| | - Vesna Lj. Ilić
- Group for Immunology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
| |
Collapse
|
3
|
Habibi N, Mauser A, Ko Y, Lahann J. Protein Nanoparticles: Uniting the Power of Proteins with Engineering Design Approaches. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104012. [PMID: 35077010 PMCID: PMC8922121 DOI: 10.1002/advs.202104012] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/12/2021] [Indexed: 05/16/2023]
Abstract
Protein nanoparticles, PNPs, have played a long-standing role in food and industrial applications. More recently, their potential in nanomedicine has been more widely pursued. This review summarizes recent trends related to the preparation, application, and chemical construction of nanoparticles that use proteins as major building blocks. A particular focus has been given to emerging trends related to applications in nanomedicine, an area of research where PNPs are poised for major breakthroughs as drug delivery carriers, particle-based therapeutics or for non-viral gene therapy.
Collapse
Affiliation(s)
- Nahal Habibi
- Biointerfaces InstituteDepartment of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Ava Mauser
- Biointerfaces InstituteDepartment of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Yeongun Ko
- Biointerfaces InstituteDepartment of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Joerg Lahann
- Biointerfaces InstituteDepartments of Chemical EngineeringMaterial Science and EngineeringBiomedical Engineeringand Macromolecular Science and EngineeringUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
4
|
Okamoto W, Hasegawa M, Usui T, Kashima T, Sakata S, Hamano T, Onozawa H, Hashimoto R, Iwazaki M, Kohno M, Komatsu T. Hemoglobin-albumin clusters as an artificial O 2 carrier: Physicochemical properties and resuscitation from hemorrhagic shock in rats. J Biomed Mater Res B Appl Biomater 2022; 110:1827-1838. [PMID: 35191606 DOI: 10.1002/jbm.b.35040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/30/2021] [Accepted: 02/09/2022] [Indexed: 01/10/2023]
Abstract
A bovine hemoglobin (HbBv) or human adult hemoglobin (HbA) wrapped covalently by human serum albumins (HSAs), hemoglobin-albumin clusters (HbBv-HSA3 and HbA-HSA3 ), are artificial O2 carriers used as a red blood cell substitute. This article describes the physicochemical properties of the HbBv-HSA3 and HbA-HSA3 solutions, and their abilities to restore the systemic condition after resuscitation from hemorrhagic shock in anesthetized rats. The HbBv-HSA3 and HbA-HSA3 , which have high colloid osmotic activity, showed equivalent solution characteristics and O2 binding parameters. Shock was induced by 50% blood withdrawal. Rats exhibited hypotension and significant metabolic acidosis. After 15 min, the rats were administered shed autologous blood (SAB), HbBv-HSA3 , HbA-HSA3 , or Ringer's lactate (RL) solution. Survival rates, circulation parameters, hematological parameters, and blood gas parameters were monitored during the hemorrhagic shock and for 6 h after administration. All rats in the SAB, HbBv-HSA3 , and HbA-HSA3 groups survived for 6 h. The HbBv-HSA3 and HbA-HSA3 groups restored mean arterial pressure after the resuscitation. No remarkable difference was observed in the time courses of blood gas parameters in any resuscitated group except for the RL group. Serum biochemical tests showed increases in aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in the HbBv-HSA3 and HbA-HSA3 groups compared to the SAB group. Therefore, we observed other rats awakened after resuscitation with HbA-HSA3 for 7 days. The blood cell count, AST, and ALT recovered to the baseline values by 7 days. All the results implied that HbBv-HSA3 and HbA-HSA3 clusters provide restoration from hemorrhagic shock as an alternative material for SAB transfusion.
Collapse
Affiliation(s)
- Wataru Okamoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Mai Hasegawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Tomone Usui
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Tomonori Kashima
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Sho Sakata
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Tatsuhiko Hamano
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Hiroto Onozawa
- Department of General Thoracic Surgery, School of Medicine, Tokai University, Kanagawa, Japan
| | - Ryo Hashimoto
- Department of General Thoracic Surgery, School of Medicine, Tokai University, Kanagawa, Japan
| | - Masayuki Iwazaki
- Department of General Thoracic Surgery, School of Medicine, Tokai University, Kanagawa, Japan
| | - Mitsutomo Kohno
- Department of General Thoracic Surgery, School of Medicine, Tokai University, Kanagawa, Japan.,Department of General Thoracic Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Teruyuki Komatsu
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| |
Collapse
|
5
|
Yamada T, Komatsu T. Methemoglobin-Albumin Cluster Incorporating Protoporphyrin IX: Dual Functional Protein Drug for Photodynamic Therapy. Chembiochem 2021; 22:2526-2529. [PMID: 34156148 DOI: 10.1002/cbic.202100213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/18/2021] [Indexed: 11/10/2022]
Abstract
We describe the synthesis, photophysical properties, and photodynamic activity of a methemoglobin (metHb) wrapped covalently by human serum albumins (HSAs) incorporating protoporphyrin IX (PPIX): a metHb-HSA3 -PPIX2 cluster. The metHb core catalyzes H2 O2 disproportionation to generate O2 in tumor tissue. The HSA3 -PPIX2 shell acts as a photosensitizer for 1 O2 formation. The metHb-HSA3 -PPIX2 cluster acts as a dual functional protein drug for photodynamic therapy.
Collapse
Affiliation(s)
- Taiga Yamada
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Teruyuki Komatsu
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga Bunkyo-ku, Tokyo, 112-8551, Japan
| |
Collapse
|
6
|
Ito Y, Abumiya T, Komatsu T, Funaki R, Gekka M, Kurisu K, Sugiyama T, Kawabori M, Osanai T, Nakayama N, Kazumata K, Houkin K. Neuroprotective effects of combination therapy of regional cold perfusion and hemoglobin-based oxygen carrier administration on rat transient cerebral ischemia. Brain Res 2020; 1746:147012. [PMID: 32652148 DOI: 10.1016/j.brainres.2020.147012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/19/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
Regional cold perfusion and hemoglobin-based oxygen carrier administration both exert neuroprotective effects against cerebral ischemia reperfusion injury. We herein investigated whether the combination of these two therapies leads to stronger neuroprotective effects. Combination therapy was performed with the regional perfusion of cold HemoAct, a core-shell structured hemoglobin-albumin cluster, in a rat transient middle cerebral artery occlusion model. The effects of combination therapy, the intra-arterial administration of 10 °C HemoAct (10H) initiated at the onset of reperfusion, were compared with those of monotherapies, the intra-arterial administration of 10 °C saline (10S) and 37 °C HemoAct (37H), and an untreated control under the condition of 2-hour ischemia/24-hour reperfusion. The durability of therapeutic effects and the therapeutic time window of combination therapy were assessed based on comparisons with the 10H and control groups. Significantly better neurological findings and smaller infarct volumes were observed in the three treated (10S, 37H, and 10H) groups than in the control group. Among the 3 treated groups, only the 10H group showed significant improvements over the control group in the other items examined, including cerebral blood flow reduction, brain edema, and protein extravasation. The significant therapeutic effects of combination therapy on neurological disabilities and infarct volumes were confirmed at least until 7 days after reperfusion. Furthermore, combination therapy ameliorated neurological disabilities and hemorrhagic transformation in rats subjected to 4- and 5-hour ischemia/24-hour reperfusion. Since therapeutic effects may be expected until at least 5 h of complete ischemia and reperfusion, this combination therapy is a promising neuroprotective strategy against severe ischemic stroke.
Collapse
Affiliation(s)
- Yasuhiro Ito
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takeo Abumiya
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Teruyuki Komatsu
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Ryosuke Funaki
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Masayuki Gekka
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kota Kurisu
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Taku Sugiyama
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masahito Kawabori
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Toshiya Osanai
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Naoki Nakayama
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ken Kazumata
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kiyohiro Houkin
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
7
|
Morita Y, Saito A, Yamaguchi J, Komatsu T. Haemoglobin(βK120C)-albumin trimer as an artificial O 2 carrier with sufficient haemoglobin allostery. RSC Chem Biol 2020; 1:128-136. [PMID: 34458753 PMCID: PMC8341959 DOI: 10.1039/d0cb00056f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/25/2020] [Indexed: 11/21/2022] Open
Abstract
The allosteric O2 release of haemoglobin (Hb) allows for efficient O2 delivery from the lungs to the tissues. However, allostery is weakened in Hb-based O2 carriers because the chemical modifications of the Lys- and Cys-β93 residues prevent the quaternary transition of Hb. In this paper, we describe the synthesis and O2 binding properties of a recombinant Hb [rHb(βK120C)]–albumin heterotrimer that maintains sufficient Hb allostery. The rHb(βK120C) core, with two additional cysteine residues at the symmetrical positions on its protein surface, was expressed using yeast cells. The mutations did not influence either the O2 binding characteristics or the quaternary transition of Hb. Maleimide-activated human serum albumins (HSAs) were coupled with rHb(βK120C) at the two Cys-β120 positions, yielding the rHb(βK120C)–HSA2 trimer, in which the Cys-β93 residues were unreacted. Molecular dynamics simulation demonstrated that the HSA moiety does not interact with the amino acid residues around the haem pockets and the α1β2 surfaces of the rHb(βK120C) core, the alteration of which retards Hb allostery. Circular dichroism spectroscopy demonstrated that the quaternary transition between the relaxed (R) state and the tense (T) state of the Hb core occurred upon both the association and dissociation of O2. In phosphate-buffered saline solution (pH 7.4) at 37 °C, the rHb(βK120C)–HSA2 trimer exhibited a sigmoidal O2 equilibrium curve with the O2 affinity and cooperativity identical to those of native Hb (p50 = 12 Torr, n = 2.4). Moreover, we observed an equal Bohr effect and 2,3-diphosphoglycerate response in the rHb(βK120C)–HSA2 trimer compared with naked Hb. Recombinant haemoglobin [rHb(βK120C)] was coupled with two human serum albumins (HSAs), yielding a rHb(βK120C)–HSA2 heterotrimer, which shows a sigmoidal O2 equilibrium curve and sufficient Hb allostery identical to those of native Hb.![]()
Collapse
Affiliation(s)
- Yoshitsugu Morita
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8551 Japan
| | - Asuka Saito
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8551 Japan
| | - Jun Yamaguchi
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8551 Japan
| | - Teruyuki Komatsu
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8551 Japan
| |
Collapse
|
8
|
Funaki R, Iwasaki H, Kashima T, Komatsu T. Lyophilized hemoglobin‐albumin cluster with disaccharides: Long‐term storable powder of artificial O
2
‐carrier. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ryosuke Funaki
- Department of Applied Chemistry, Faculty of Science and EngineeringChuo University Tokyo Japan
| | - Hitomi Iwasaki
- Department of Applied Chemistry, Faculty of Science and EngineeringChuo University Tokyo Japan
| | - Tomonori Kashima
- Department of Applied Chemistry, Faculty of Science and EngineeringChuo University Tokyo Japan
| | - Teruyuki Komatsu
- Department of Applied Chemistry, Faculty of Science and EngineeringChuo University Tokyo Japan
| |
Collapse
|
9
|
Funaki R, Okamoto W, Endo C, Morita Y, Kihira K, Komatsu T. Genetically engineered haemoglobin wrapped covalently with human serum albumins as an artificial O 2 carrier. J Mater Chem B 2020; 8:1139-1145. [PMID: 31840728 DOI: 10.1039/c9tb02184a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the synthesis and O2 affinity of genetically engineered human adult haemoglobin (rHbA) wrapped covalently with recombinant human serum albumins (rHSAs) as an artificial O2 carrier used for a completely synthetic red blood cell (RBC) substitute. Wild-type rHbA [rHbA(wt)] expressed in yeast species Pichia pastoris shows an identical amino acid sequence and three-dimensional structure to those of native HbA. It is particularly interesting that two orientations of the prosthetic haem group in rHbA(wt) were aligned by gentle heating in the natural form. Covalent wrapping of rHbA(wt) with three rHSAs conferred a core-shell structured haemoglobin-albumin cluster: rHbA(wt)-rHSA3. Three variant clusters containing an rHbA mutant core were also created: Leu-β28 → Phe, Leu-β28 → Trp, and Leu-β28 → Tyr/His-β63 → Gln. Replacement of Leu-β28 with Trp decreased the distal space in the haem pocket, thereby yielding a cluster with moderately low O2 affinity which is nearly the same as that of human RBC.
Collapse
Affiliation(s)
- Ryosuke Funaki
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.
| | - Wataru Okamoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.
| | - Chihiro Endo
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.
| | - Yoshitsugu Morita
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.
| | - Kiyohito Kihira
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), 2-1-1 Sengen, Tsukuba-shi, Ibaraki 305-8505, Japan
| | - Teruyuki Komatsu
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.
| |
Collapse
|
10
|
Morita Y, Yamada T, Kureishi M, Kihira K, Komatsu T. Quaternary Structure Analysis of a Hemoglobin Core in Hemoglobin–Albumin Cluster. J Phys Chem B 2018; 122:12031-12039. [DOI: 10.1021/acs.jpcb.8b10077] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yoshitsugu Morita
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Taiga Yamada
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Moeka Kureishi
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Kiyohito Kihira
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), 2-1-1 Sengen, Tsukuba-shi, Ibaraki 305-8505, Japan
| | - Teruyuki Komatsu
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|