1
|
Ali I, Ali A, Guo L, Burki S, Rehman JU, Fazal M, Ahmad N, Khan S, Toloza CAT, Shah MR. Synthesis of calix (4) resorcinarene based amphiphilic macrocycle as an efficient nanocarrier for Amphotericin-B to enhance its oral bioavailability. Colloids Surf B Biointerfaces 2024; 238:113918. [PMID: 38669750 DOI: 10.1016/j.colsurfb.2024.113918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/22/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
The supramolecular-based macrocyclic amphiphiles have fascinating attention and find extensive utilization in the pharmaceutical industry for efficient drug delivery. In this study, we designed and synthesized a new supramolecular amphiphilic macrocycle to serve as an efficient nanocarrier, achieved by treating 4-hydroxybenzaldehyde with 1-bromotetradecane. The derivatized product was subsequently treated with resorcinol to cyclize, resulting in the formation of a calix(4)-resorcinarene-based supramolecular amphiphilic macrocycle. The synthesized macrocycle and intermediate products were characterized using mass spectrometry, IR, and 1H NMR spectroscopic techniques. The amphotericin-B (Amph-B)-loaded and unloaded amphiphiles were screened for biocompatibility studies, vesicle formation, particle shape, size, surface charge, drug entrapment, in-vitro release profile, and stability through atomic force microscopy (AFM), Zetasizer, HPLC, and FT-IR. Amph-B -loaded macrocycle-based niosomal vesicles were investigated for in-vivo bioavailability in rabbits. The synthesized macrocycle exhibited no cytotoxicity against normal mouse fibroblast cells and was found to be hemocompatible and safe in mice following an acute toxicity study. The drug-loaded macrocycle-based vesicles appeared spherical, nano-sized, and homogeneous in size, with a notable negative surface charge. The vesicles remained stable after 30 days of storage. The results of Amph-B oral bioavailability and pharmacokinetics revealed that the newly tailored niosomal formulation enhanced drug solubility, protected drug degradation at gastric pH, facilitated sustained drug release at the specific target site, and delayed plasma drug clearance. Incorporating such advanced niosomal formulations in the field of drug delivery systems has the potential to revolutionize therapeutic outcomes and improve the quality of patient well-being.
Collapse
Affiliation(s)
- Imdad Ali
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi 74200, Pakistan
| | - Amjad Ali
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China; Institute of Chemistry University of Silesia Szkolna 9, Katowice 40-600, Poland.
| | - Li Guo
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Samiullah Burki
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Jinnah Sindh Medical University, Karachi
| | - Jawad Ur Rehman
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi 74200, Pakistan
| | - Mahmood Fazal
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi 74200, Pakistan
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh-11451, Kingdom of Saudi Arabia
| | - Sarzamin Khan
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa, Anbar-23561, Pakistan
| | - Carlos A T Toloza
- Department of Natural and Exact Science, Universidad de la Costa, Barranquilla, Colombia
| | - Muhammad Raza Shah
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi 74200, Pakistan.
| |
Collapse
|
2
|
Bhatia S, Al-Harrasi A, Almohana IH, Albayati MS, Jawad M, Shah YA, Ullah S, Philip AK, Halim SA, Khan A, Anwer MK, Koca E, Aydemir LY, Dıblan S. The physicochemical properties and molecular docking study of plasticized amphotericin B loaded sodium alginate, carboxymethyl cellulose, and gelatin-based films. Heliyon 2024; 10:e24210. [PMID: 38304764 PMCID: PMC10830537 DOI: 10.1016/j.heliyon.2024.e24210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
Plasticizers are employed to stabilize films by safeguarding their physical stability and avoiding the degradation of the loaded therapeutic drug during processing and storage. In the present study, the plasticizer effect (glycerol) was studied on bioadhesive films based on sodium alginate (SA), carboxymethyl cellulose (CMC) and gelatin (GE) polymers loaded with amphotericin B (AmB). The main objective of the current study was to assess the morphological, mechanical, thermal, optical, and barrier properties of the films as a function of glycerol (Gly) concentration (0.5-1.5 %) using different techniques such as Scanning Electron Microscope (SEM), Texture analyzer (TA), Differential Scanning Calorimeter (DSC), X-Ray Diffraction (XRD), and Fourier Transforms Infrared Spectroscopy (FTIR). The concentration increase of glycerol resulted in an increase in Water Vapor Permeability (WVP) (0.187-0.334), elongation at break (EAB) (0.88-35.48 %), thickness (0.032-0.065 mm) and moisture level (17.5-41.76 %) whereas opacity, tensile strength (TS) (16.81-0.86 MPa), and young's modulus (YM) (0.194-0.002 MPa) values decreased. Glycerol incorporation in the film-Forming solution decreased the brittleness and fragility of the films. Fourier Transform Infrared (FTIR) spectra showed that intermolecular hydrogen bonding occurred between glycerol and polymers in plasticized films compared to control films. Furthermore, molecular docking was applied to predict the binding interactions betweem AmB, CMC, gelatin, SA and glycerol, which further endorsed the stabilizing effects of glycerol in the complex formation between AmB, CMC, SA, and gelatin. The Findings of the current study demonstrated that this polymeric blend could be used to successfully prepare bioadhesive films with glycerol as a plasticizer.
Collapse
Affiliation(s)
- Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa, 616, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, 248007, India
- Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa, 616, Oman
| | - Ibrahim Hamza Almohana
- School of Pharmacy, College of Health Sciences, University of Nizwa-616, Birkat Al Mouz, Oman
| | - Mustafa Safa Albayati
- School of Pharmacy, College of Health Sciences, University of Nizwa-616, Birkat Al Mouz, Oman
| | - Muhammad Jawad
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa, 616, Oman
| | - Yasir Abbas Shah
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa, 616, Oman
| | - Sana Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa, 616, Oman
| | - Anil K. Philip
- School of Pharmacy, College of Health Sciences, University of Nizwa-616, Birkat Al Mouz, Oman
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa, 616, Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa, 616, Oman
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Esra Koca
- Department of Food Engineering, Adana Alparslan Turkes Science and Technology University, 01250, Adana, Turkey
| | - Levent Yurdaer Aydemir
- Department of Food Engineering, Adana Alparslan Turkes Science and Technology University, 01250, Adana, Turkey
| | - Sevgin Dıblan
- Food Processing Department, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100, Tarsus/Mersin, Turkey
| |
Collapse
|
3
|
Synthetic star shaped tetra-tailed biocompatible supramolecular amphiphile as an efficient nanocarrier for Amphotericin B. Chem Phys Lipids 2023; 250:105257. [PMID: 36370890 DOI: 10.1016/j.chemphyslip.2022.105257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Macrocycle-based amphiphiles are capable of self-assembling into multidimensional nano-architecture with defined dimensions for various applications. Herein we report the synthesis, physio-chemical characterizations and oral drug delivery profiling of resorcinarene-based amphiphilic supramolecular macrocycle. The macrocycle was synthesized in two-step reaction and characterized using 1H NMR, Mass spectrometry and IR spectroscopic techniques. The synthesized macrocycle was assessed for vesicles formation, checked for biocompatibility and then Amphotericin B (Amp-B) was entrapped in macrocycle-based vesicles. The drug loaded vesicles were characterized for shape, size, homogeneity, drug entrapment, surface charge, in-vitro release profile and stability. Amp-B loaded macrocycle based vesicles were examined in rabbits for in-vivo bioavailability and compared with plan drug suspension. The synthesized macrocycle was non-toxic in normal mouse fibroblast cells, compatible with blood and safe in mice. The drug loaded macrocycle based vesicles appeared spherical with 279.4 nm size and - 12.2 mV zeta potential loading 85.45 % drug. The drug loaded vesicles storage stability for 30 days and gastric fluid stability for 1 h were it retained nearly 90 % drug at 30th day and 83.79 % drug at 1 h in gastric fluid. Oral bioavailability of Amp-B in rabbits was markedly enhanced when delivered in synthesized macrocycle based vesicles in comparison with plan drug suspension. Results of this study indicate that the synthesized star shaped tetra-tailed supramolecular amphiphile could be used as an efficient nanocarrier for enhancing oral bioavailability of drugs with solubility and bioavailability issues like Amp-B.
Collapse
|
4
|
Ziganshina AY, Mansurova EE, Antipin IS. Colloids Based on Calixresorcins for the Adsorption, Conversion, and Delivery of Bioactive Substances. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x22700028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Saeed BQ, Hussain K, Akbar N, Khan H, Siddiqui R, Shah RM, Khan NA. Nanovesicles containing curcumin hold promise in the development of new formulations of anti-Acanthamoebic agents. Mol Biochem Parasitol 2021; 247:111430. [PMID: 34813865 DOI: 10.1016/j.molbiopara.2021.111430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/05/2021] [Accepted: 11/18/2021] [Indexed: 10/19/2022]
Abstract
In this study, curcumin-nanoformulations were tested for anti-Acanthamoebic properties. Curcumin-loaded nanovesicles were synthesized, followed by characterization with Fourier transform infrared spectroscopy, ultraviolet-visible spectrophotometry, and atomic force microscopy. Using amoebicidal assay, the effects of curcumin-nanoformulations were investigated against A. castellanii belonging to the T4 genotype. To determine the effects of curcumin-nanoformulations on host cells, cytotoxicity assays were performed using human keratinocyte cells (HaCat). The results revealed that nanovesicles formulation of curcumin enhanced the anti-Acanthamoebic effects of curcumin as compared with curcumin alone. The viability decreased with increasing concentration of curcumin and/or lipid-based carrier (Noisome) (FCBR18) in a dose-dependent manner. Curcumin and curcumin-loaded nanovesicles exhibited minimal cytotoxic effects against human cells in all tested concentrations. Both concentrations of FCBR18 proved effective in inhibiting amoebae excystation. In contrast, curcumin alone showed insignificant effects against amoebae excystation. Taken together, these findings clearly showed that curcumin-loaded nanovesicles show enhanced anti-Acanthamoebic efficacy without harming human cells, and these nanotherapeutics may hold promise in the development of new formulations of anti-Acanthamoebic agents.
Collapse
Affiliation(s)
- Balsam Qubais Saeed
- Department of Clinical Sciences, College of Medicine, University of Sharjah, United Arab Emirates.
| | - Kashif Hussain
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Noor Akbar
- College of Arts and Sciences, American University of Sharjah, United Arab Emirates
| | - Hamza Khan
- College of Arts and Sciences, American University of Sharjah, United Arab Emirates
| | - Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, United Arab Emirates
| | - Raza Muhammad Shah
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, United Arab Emirates.
| |
Collapse
|
6
|
Rehman K, Ali I, El-Haj BM, Kanwal T, Maharjan R, Saifullah S, Imran M, Shafiullah, Usman Simjee S, Raza Shah M. Synthesis of novel biocompatible resorcinarene based nanosized dendrimer-vesicles for enhanced anti-bacterial potential of quercetin. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Synthesis of quercetin based self-assembling supramolecular amphiphiles for amphotericin B delivery. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Kashapov RR, Razuvayeva YS, Ziganshina AY, Mukhitova RK, Sapunova AS, Voloshina AD, Nizameev IR, Kadirov MK, Zakharova LY. Design of N-Methyl-d-Glucamine-Based Resorcin[4]arene Nanoparticles for Enhanced Apoptosis Effects. Mol Pharm 2020; 17:40-49. [PMID: 31746611 DOI: 10.1021/acs.molpharmaceut.9b00599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The addition of specific chemical groups in a macrocycle structure influences its functional properties and, consequently, can provide new possibilities, among which are aggregation properties, water solubility, biocompatibility, stimuli response, biological activity, etc. Herein, we report synthesis of new resorcin[4]arene with N-methyl-d-glucamine groups on the upper rim and n-decyl chains on the lower rim, an investigation of its self-assembly behavior in aqueous media, and its use as a building block for the formation of drug nanocontainer. N-methyl-d-glucamine fragments in the resorcin[4]arene structure promote higher stability in solutions, simplification of self-aggregation, and increased biological activity. Antimicrobial and hemolytic activity assessment revealed that this resorcin[4]arene obtained is nontoxic. The study of cell penetration was carried out with both free and encapsulated doxorubicin (DOX). Surprisingly, DOX-loaded macrocycle aggregates are more efficient in causing apoptosis in human cancer cell line. Conceivably, this knowledge will help in the rational design of DOX combination for novel drug-administration strategies in cancer treatment.
Collapse
Affiliation(s)
- Ruslan R Kashapov
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center of RAS , 8 Arbuzov str. , Kazan 420088 , Russia
| | - Yuliya S Razuvayeva
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center of RAS , 8 Arbuzov str. , Kazan 420088 , Russia.,Kazan National Research Technological University , 68 K. Marx str. , Kazan 420015 , Russia
| | - Albina Y Ziganshina
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center of RAS , 8 Arbuzov str. , Kazan 420088 , Russia
| | - Rezeda K Mukhitova
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center of RAS , 8 Arbuzov str. , Kazan 420088 , Russia
| | - Anastasiya S Sapunova
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center of RAS , 8 Arbuzov str. , Kazan 420088 , Russia
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center of RAS , 8 Arbuzov str. , Kazan 420088 , Russia
| | - Irek R Nizameev
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center of RAS , 8 Arbuzov str. , Kazan 420088 , Russia.,Kazan National Research Technological University , 68 K. Marx str. , Kazan 420015 , Russia
| | - Marsil K Kadirov
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center of RAS , 8 Arbuzov str. , Kazan 420088 , Russia.,Kazan National Research Technological University , 68 K. Marx str. , Kazan 420015 , Russia
| | - Lucia Ya Zakharova
- Arbuzov Institute of Organic and Physical Chemistry , FRC Kazan Scientific Center of RAS , 8 Arbuzov str. , Kazan 420088 , Russia.,Kazan National Research Technological University , 68 K. Marx str. , Kazan 420015 , Russia
| |
Collapse
|