1
|
Peng S, Xu Y, Lin X. Inhibition of FOXO3 ameliorates ropivacaine-induced nerve cell damage through the miR-126-5p/TRAF6 axis. In Vitro Cell Dev Biol Anim 2024; 60:1109-1120. [PMID: 39227495 DOI: 10.1007/s11626-024-00970-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Local anesthetics, such as ropivacaine (Ropi), are toxic to nerve cells. We aimed to explore the role of forkhead box O3 (FOXO3) in Ropi-induced nerve injury to provide a theoretical basis for reducing the anesthetic neurotoxicity. SK-N-SH cells were cultured and treated with different concentrations of Ropi. Cell viability, apoptosis, cytotoxicity (LDH/ROS/SOD), and levels of FOXO3, miR-126-5p, and tumor necrosis factor receptor-associated factor 6 (TRAF6) were detected. The enrichment of FOXO3 on the miR-126-5p promoter was analyzed. The binding relationships among FOXO3, miR-126-5p promoter sequence, and TRAF6 3'UTR sequence were verified. Combined experiments detected the regulatory role of FOXO3/miR-126-5p/TRAF6 in Ropi-induced nerve injury. FOXO3 was upregulated in Ropi-induced nerve cell damage. Inhibition of FOXO3 ameliorated Ropi-induced decreased cell viability, and increased apoptosis and cytotoxicity. FOXO3 bound to the miR-126-5p promoter and inhibited its expression, thereby counteracting miR-126-5p-induced repression. miR-126-5p inhibition and TRAF6 overexpression partially reversed the alleviative effect of FOXO3 inhibition on Ropi-induced nerve cell damage. In conclusion, FOXO3 aggravated the neurotoxicity of Ropi through miR-126-5p downregulation and TRAF6 upregulation, suggesting that FOXO3 inhibitor could be an adjuvant agent for local anesthetics, to alleviate local anesthetics-induced neurotoxicity.
Collapse
Affiliation(s)
- Song Peng
- Department of Anesthesiology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Yuzeng Xu
- Department of Anesthesiology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Xiao Lin
- Department of Anesthesiology, Women's Hospital School of Medicine Zhejiang University, 1 Bachelor Road, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
2
|
Li D, Li Y, Pan W, Yang B, Fu C. Role of dynamin-related protein 1-dependent mitochondrial fission in drug-induced toxicity. Pharmacol Res 2024; 206:107250. [PMID: 38878917 DOI: 10.1016/j.phrs.2024.107250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 07/24/2024]
Abstract
Dynamin-related protein 1 (DRP1) is an essential controller of mitochondrial fission whose activity is tightly controlled to ensure balanced mitochondrial dynamics and maintain internal cellular homeostasis. Growing evidence suggests that DRP1-dependent mitochondrial fission plays a role in drug-induced toxicity (DIT). Therefore, understanding the molecular mechanisms underlying DIT and the precise regulation of DRP1 function will inform the development of potential therapeutic treatments for DIT. This review comprehensively summarizes the diverse DITs and their potential mechanism associated with DRP1-dependent mitochondrial fission and discusses in vivo and in vitro model studies of toxicity protection targeting DRP1.
Collapse
Affiliation(s)
- Dan Li
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yueyan Li
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Wei Pan
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Bo Yang
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Chengxiao Fu
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; The First Affiliated Hospital, Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases,Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
3
|
Wu L, Wei S, Pei D, Yao Y, Xiang Z, Yu E, Chen Z, Du Z, Qu S. Activation of the Akt Attenuates Ropivacaine-Induced Myelination Impairment in Spinal Cord and Sensory Dysfunction in Neonatal Rats. Mol Neurobiol 2023; 60:7009-7020. [PMID: 37523045 DOI: 10.1007/s12035-023-03498-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Prolonged exposure to local anesthetics (LAs) or intrathecal administration of high doses of LAs can cause spinal cord damage. Intraspinal administration of LAs is increasingly being used in children and neonates. Therefore, it is important to study LA-related spinal cord damage and the underlying mechanism in developmental models. First, neonatal Sprague-Dawley rats received three intrathecal injections of 0.5% ropivacaine, 1% ropivacaine, 2% ropivacaine or saline (90-min interval) on postnatal day 7. Electron microscopy, luxol fast blue staining and behavioral tests were performed to evaluate the spinal neurotoxicity caused by ropivacaine at different concentrations. Western blot analysis and immunostaining was performed to detect the expression changes of p-Akt, Akt, myelin gene regulatory factor (MYRF) and myelin basic protein (MBP) in the spinal cord treated with different concentrations of ropivacaine. Our results showed that 1% or 2% ropivacaine impaired myelination in the spinal cord and induced sensory dysfunction, but 0.5% ropivacaine did not. Moreover, 1% or 2% ropivacaine decreased the expression of p-Akt, MYRF and MBP in the spinal cord. Then, in order to further explore the role of these proteins in this model, the Akt-specific activator (SC79) was intraperitoneally injected 30 min before 2% ropivacaine treatment. Interestingly, SC79-mediated activation of Akt partly rescued ropivacaine-induced myelination impairments and sensory dysfunction. Overall, the results showed that ropivacaine caused spinal neurotoxicity in a dose-dependent manner in neonatal rats and that activation of the Akt partly rescued ropivacaine-induced these changes. These data provide insight into the neurotoxicity to the developing spinal cord caused by LAs.
Collapse
Affiliation(s)
- Lei Wu
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China
| | - Siwei Wei
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China
| | - Dongjie Pei
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China
| | - Yiyi Yao
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China
| | - Zhen Xiang
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China
| | - Eryou Yu
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China
| | - Zheng Chen
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China
| | - Zhen Du
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China.
| | - Shuangquan Qu
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China.
| |
Collapse
|
4
|
Tan YZ, Shi RJ, Ke BW, Tang YL, Liang XH. Paresthesia in dentistry: The ignored neurotoxicity of local anesthetics. Heliyon 2023; 9:e18031. [PMID: 37539316 PMCID: PMC10395355 DOI: 10.1016/j.heliyon.2023.e18031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 06/20/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Local anesthetics are frequently used by dentists to relieve localized discomfort of the patient and improve treatment conditions. The risk of paresthesia after local anesthesia is frequently encountered in dental clinics. The neurotoxicity of local anesthetics is a disregarded factor in paresthesia. The review summarizes the types of common local anesthetics, incidence and influencing factors of paresthesia after local anesthesia, and systematically describes the neurotoxicity mechanisms of dental local anesthetic. Innovative strategies may be developed to lessen the neurotoxicity and prevent paresthesia following local anesthesia with the support of a substantial understanding of paresthesia and neurotoxicity.
Collapse
Affiliation(s)
- Yong-zhen Tan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rong-jia Shi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo-wen Ke
- Laboratory of Anesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ya-ling Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin-hua Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Wang R, Liu P, Li F, Qiao H. Dexmedetomidine protects against Ropivacaine-induced neuronal pyroptosis via the Nrf2/HO-1 pathway. J Toxicol Sci 2023; 48:139-148. [PMID: 36858639 DOI: 10.2131/jts.48.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Dexmedetomidine (DEX) has been demonstrated to protect against ropivacaine (Ropi)-induced neuronal damages. This study was conducted to explore the protective role of DEX in Ropi-induced neuronal pyroptosis and provide a strategy to eliminate Ropi-induced neurotoxicity. The impacts of different concentrations of Ropi and DEX on neurotoxicity in SK-N-SH cells were evaluated by cell counting kit-8 assay and lactic dehydrogenase assay kits. Levels of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1), NLR family pyrin domain containing 3 (NLRP3), cleaved Caspase-1, cleaved N-terminal gasdermin D, interleukin (IL)-1β, and IL-18 were measured by real-time quantitative PCR, Western blotting, and enzyme linked immunosorbent assay. The Nrf2 level after nuclear/cytoplasmic separation was quantified. SK-N-SH cells were treated with si-Nrf2, Nigericin (NLRP3 activator), and Zinc Protoporphyrin (HO-1 inhibitor) to validate the mechanism. Ropi reduced SK-N-SH cell viability in a concentration- and time-dependent manner. DEX treatment alleviated Ropi-induced toxicity and inhibited pyroptosis. Ropi increased the expression levels of Nrf2 and HO-1, and DEX further enhanced the increases and promoted Nrf2 nuclear translocation. Nrf2/HO-1 inhibition or NLRP3 activation both neutralized the inhibitory role of DEX in Ropi-induced pyroptosis of SK-N-SH cells. Overall, DEX promoted the Nrf2/HO-1 pathway to inhibit NLRP3 expression, thus alleviating Ropi-induced neuronal pyroptosis.
Collapse
Affiliation(s)
- Run Wang
- Department of Anesthesiology, Beijing Shijitan Hospital affiliated to Capital Medical University, China
| | - Pengfei Liu
- Department of Anesthesiology, Beijing Shijitan Hospital affiliated to Capital Medical University, China
| | - Fan Li
- Department of Anesthesiology, Beijing Shijitan Hospital affiliated to Capital Medical University, China
| | - Hui Qiao
- Department of Anesthesiology, Beijing Shijitan Hospital affiliated to Capital Medical University, China
| |
Collapse
|
6
|
Xu W, Li X, Chen L, Luo X, Shen S, Wang J. Dexmedetomidine pretreatment alleviates ropivacaine-induced neurotoxicity via the miR-10b-5p/BDNF axis. BMC Anesthesiol 2022; 22:304. [PMID: 36163004 PMCID: PMC9511747 DOI: 10.1186/s12871-022-01810-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Ropivacaine is commonly applied for local anesthesia and may cause neurotoxicity. Dexmedetomidine (DEX) exhibits neuroprotective effects on multiple neurological disorders. This study investigated the mechanism of DEX pretreatment in ropivacaine-induced neurotoxicity. METHODS Mouse hippocampal neuronal cells (HT22) and human neuroblastoma cells (SH-SY5Y) were treated with 0.5 mM, 1 mM, 2.5 mM, and 5 mM ropivacaine. Then the cells were pretreated with different concentrations of DEX (0.01 μM, 0.1 μM, 1 μM, 10 μM, and 100 μM) before ropivacaine treatment. Proliferative activity of cells, lactate dehydrogenase (LDH) release, and apoptosis rate were measured using CCK-8 assay, LDH detection kit, and flow cytometry, respectively. miR-10b-5p and BDNF expressions were determined using RT-qPCR or Western blot. The binding of miR-10b-5p and BDNF was validated using dual-luciferase assay. Functional rescue experiments were conducted to verify the role of miR-10b-5p and BDNF in the protective mechanism of DEX on ropivacaine-induced neurotoxicity. RESULTS Treatment of HT22 or SH-SY5Y cells with ropivacaine led to the increased miR-10b-5p expression (about 1.7 times), decreased BDNF expression (about 2.2 times), reduced cell viability (about 2.5 times), elevated intracellular LDH level (about 2.0-2.5 times), and enhanced apoptosis rate (about 3.0-4.0 times). DEX pretreatment relieved ropivacaine-induced neurotoxicity, as evidenced by enhanced cell viability (about 1.7-2.0 times), reduced LDH release (about 1.7-1.8 times), and suppressed apoptosis rate (about 1.8-1.9 times). DEX pretreatment repressed miR-10b-5p expression (about 2.5 times). miR-10b-5p targeted BDNF. miR-10b-5p overexpression or BDNF silencing reversed the protective effect of DEX pretreatment on ropivacaine-induced neurotoxicity, manifested as reduced cell viability (about 1.3-1.6 times), increased intracellular LDH level (about 1.4-1.7 times), and elevated apoptosis rate (about 1.4-1.6 times). CONCLUSIONS DEX pretreatment elevated BDNF expression by reducing miR-10b-5p expression, thereby alleviating ropivacaine-induced neurotoxicity.
Collapse
Affiliation(s)
- Weicai Xu
- Rehabilitation Medicine Center, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiaojun Li
- Rehabilitation Medicine Center, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Long Chen
- Rehabilitation Medicine Center, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiaopan Luo
- Rehabilitation Medicine Center, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Sheliang Shen
- Rehabilitation Medicine Center, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jing Wang
- Department of General Practice, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
7
|
Yang HY, Zhang F, Cheng ML, Wu J, Xie M, Yu LZ, Liu L, Xiong J, Zhu HL. Glycogen synthase kinase-3β inhibition decreases inflammation and relieves cancer induced bone pain via reducing Drp1-mediated mitochondrial damage. J Cell Mol Med 2022; 26:3965-3976. [PMID: 35689386 PMCID: PMC9279596 DOI: 10.1111/jcmm.17432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/24/2022] [Accepted: 05/20/2022] [Indexed: 12/19/2022] Open
Abstract
Bone is the preferential site of metastasis for breast cancer. Invasion of cancer cells induces the destruction of bone tissue and damnification of peripheral nerves and consequently induced central sensitization which contributes to severe pain. Herein, cancer induced bone pain (CIBP) rats exhibited destruction of tibia, mechanical allodynia and spinal inflammation. Inflammatory response mainly mediated by astrocyte and microglia in central nervous system. Our immunofluorescence analysis revealed activation of spinal astrocytes and microglia in CIBP rats. Transmission electron microscopy (TEM) observations of mitochondrial outer membrane disruption and cristae damage in spinal mitochondria of CIBP rats. Proteomics analysis identified abnormal expression of proteins related to mitochondrial organization and function. Intrathecally, injection of GSK‐3β activity inhibitor TDZD‐8 significantly attenuated Drp1‐mediated mitochondrial fission and recovered mitochondrial function. Inhibition of GSK‐3β activity also suppressed NLRP3 inflammasome cascade and consequently decreased mechanical pain sensitivity of CIBP rats. For cell research, TDZD‐8 treatment significantly reversed TNF‐α induced mitochondrial membrane potential (MMP) deficiency and high mitochondrial reactive oxygen species level. Taken together, GSK‐3β inhibition by TDZD‐8 decreases spinal inflammation and relieves cancer induced bone pain via reducing Drp1‐mediated mitochondrial damage.
Collapse
Affiliation(s)
- He-Yu Yang
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Feng Zhang
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Meng-Lin Cheng
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| | - Ji Wu
- Clinical College of Youjiang, Medical University for Nationalities, Baise, Guangxi, China
| | - Min Xie
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| | - Liang-Zhu Yu
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| | - Ling Liu
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| | - Jun Xiong
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Hai-Li Zhu
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
8
|
Hossain MA, Hasegawa-Ogawa M, Manome Y, Igarashi M, Wu C, Suzuki K, Igarashi J, Iwamoto T, Okano HJ, Eto Y. Generation and characterization of motor neuron progenitors and motor neurons using metachromatic leukodystrophy-induced pluripotent stem cells. Mol Genet Metab Rep 2022; 31:100852. [PMID: 35782608 PMCID: PMC9248224 DOI: 10.1016/j.ymgmr.2022.100852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 10/29/2022] Open
|
9
|
Ao CB, Wu PL, Shao L, Yu JY, Wu WG. Clinical effect of ultrasound-guided nerve block and dexmedetomidine anesthesia on lower extremity operative fracture reduction. World J Clin Cases 2022; 10:4064-4071. [PMID: 35665104 PMCID: PMC9131224 DOI: 10.12998/wjcc.v10.i13.4064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/17/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lower extremity fractures are mainly treated by surgical reduction, but this operation is often affected by the patient’s level of agitation and the type of anesthesia used. The main treatment for lower-extremity fractures is operative reduction. However, operations can often be affected by both agitation and the degree of anesthesia. Therefore, it is of great importance to develop an effective anesthesia program to effectively ensure the progress of surgery.
AIM To discuss the effect of ultrasound-guided nerve block combined with dexmedetomidine anesthesia in lower extremity fracture surgery.
METHODS A total of 120 hospital patients with lower extremity fractures were selected for this retrospective study and divided into an observation group (n = 60) and a control group (n = 60) according to the anesthesia scheme; the control group received ultrasound-guided nerve block; the observation group was treated with dextromethomidine on the basis of the control group, and the mean arterial pressure, heart rate (HR), and blood oxygen saturation were observed in the two groups.
RESULTS The mean arterial pressure of T1, T2 and T3 in the observation group were 94.40 ± 7.10, 90.84 ± 7.21 and 91.03 ± 6.84 mmHg, significantly higher than that of the control group (P < 0.05). The observation group’s HR at T1 was 76.60 ± 7.52 times/min, significantly lower than that of the control group (P < 0.05); The observation group’s HR at T2 and T3 was 75.40 ± 8.03 times/min and 76.64 ± 7.11 times/min, significantly higher than that of the control group (P < 0.05). The observation group’s visual analog score at 2 h, 6 h and 12 h after operation was 3.55 ± 0.87, 2.84 ± 0.65 and 2.05 ± 0.40. the recovery time was 15.51 ± 4.21 min, significantly lower than that of the control group (P < 0.05). Six hours post-anesthesia, epinephrine and norepinephrine in the observation group were 81. 10 ± 21.19 pg/mL and 510. 20 ± 98.27 pg/mL, significantly lower than that of the control group (P < 0.05), and the mini-mental state exam score of the observation group was 25. 51 ± 1.15, significantly higher than that in the control group (P < 0.05).
CONCLUSION Ultrasound-guided nerve block combined with dexmedetomidine has a good anesthetic effect in the operation of lower limb fractures and has little effect on the hemodynamics of patients.
Collapse
Affiliation(s)
- Cheng-Bin Ao
- Department of Anesthesiology, The People’s Hospital of Yuhuan, Taizhou 317600, Zhejiang Province, China
| | - Ping-Lei Wu
- Department of Anesthesiology, The People’s Hospital of Yuhuan, Taizhou 317600, Zhejiang Province, China
| | - Liang Shao
- Department of Anesthesiology, The People’s Hospital of Yuhuan, Taizhou 317600, Zhejiang Province, China
| | - Jian-Ying Yu
- Department of Anesthesiology, The People’s Hospital of Yuhuan, Taizhou 317600, Zhejiang Province, China
| | - Wei-Guo Wu
- Department of Orthopedics, Taizhou Luqiao Second People’s Hospital, Taizhou 318000, Zhejiang Province, China
| |
Collapse
|
10
|
Arslan NP, Keles ON, Gonul-Baltaci N. Effect of Titanium Dioxide and Silver Nanoparticles on Mitochondrial Dynamics in Mouse Testis Tissue. Biol Trace Elem Res 2022; 200:1650-1658. [PMID: 34105085 DOI: 10.1007/s12011-021-02763-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022]
Abstract
This study was performed to investigate whether the toxicity of nanoparticles (Ag NPs or TiO2 NPs) affected mitochondrial dynamics (mitochondrial fusion and fission mechanisms) in testicular cells of mice. Animals were assigned into three groups (ten mice per group): control group (distilled water), TiO2 NP group (5 mg/kg per dose), and Ag NP group (5 mg/kg per dose). NPs were administered intravenously (via tail vein) to mice with 3-day intervals. To determine the possible toxic effect of NPs on mitochondrial dynamics, the expression levels of mitochondrial fission (Drp1)- and fusion (Mfn1, Mfn2, OPA1)-related genes were analyzed. The results showed that both Ag NPs and TiO2 NPs entered the testis via the blood-testis barier and accumulated in mouse testis tissue. Experiments showed that administration of Ag NPs neither alters testicular weight and testicular index nor causes significant toxic effect on sperm parameters. RT-PCR analysis demonstrated that Ag NP treatment did not disrupt mitochondrial dynamics in testicular cells. Conversely, administration of TiO2 NPs (anatase, < 25 nm) decreased the sperm motility and the percentages of sperms with swollen tail. Furthermore, RT-PCR and western blot analyses showed that TiO2 NPs disrupted mitochondrial dynamics by causing excess mitochondrial fission (excess expression of Drp1 gene and DRP1 protein). This is the first report on the toxicity of nanoparticles on mitochondrial dynamics (fusion and fission mechanisms) in testicular cells.
Collapse
Affiliation(s)
- Nazli Pinar Arslan
- Vocational School of Health Services, Bingol University, 12000, Bingol, Turkey.
- Department of Histology and Embryology, Ataturk University School of Medicine, Erzurum, Turkey.
| | - Osman Nuri Keles
- Department of Histology and Embryology, Ataturk University School of Medicine, Erzurum, Turkey
| | - Nurdan Gonul-Baltaci
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
11
|
Wang W, Zhou H, Sun L, Li M, Gao F, Sun A, Zou X. Osthole-Mediated Inhibition of Neurotoxicity Induced by Ropivacaine via Amplification of the Cyclic Adenosine Monophosphate Signaling Pathway. Dose Response 2022; 20:15593258221088092. [PMID: 35392264 PMCID: PMC8980408 DOI: 10.1177/15593258221088092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022]
Abstract
Background Ropivacaine is widely used for clinical anesthesia and postoperative analgesia. However, the neurotoxicity induced by ropivacaine in a concentration- and duration-dependent manner, and it is difficult to prevent neurotoxicity. Osthole inhibits phosphodiesterase-4 activity by binding to its catalytic site to prevent cAMP hydrolysis. The aim of this present study is to explore the precise molecular mechanism of osthole-mediated inhibition of neurotoxicity induced by ropivacaine. Methods: SH-SY5Y cell viability and apoptosis were measured in different concentration and duration. Protein concentration was determined in each signaling pathway. The molecular mechanism of osthole-mediated inhibition of ropivacaine-caused neurotoxicity was evaluated. Results The study demonstrated that osthole inhibits SH-SY5Y cells neurotoxicity in a duration- and concentration-dependent manner. Moreover, ropivacaine significantly increased the expression of caspase-3 by promoting the phosphorylation of p38. Osthole-induced upregulation of cAMP activated cAMP-dependent signaling pathway, sequentially leading to elevated cyclic nucleotide response element-binding protein levels, which inhibits P38-dependent signaling and decreases apoptosis of SH-SY5Y. Conclusions This study display the evidence confirmed the molecular mechanism by which osthole amplification of cAMP-dependent signaling pathway, and overexpression of cyclic nucleotide response element-binding protein inhibits P38-dependent signaling and decreases ropivacaine-induced SH-SY5Y apoptosis.
Collapse
Affiliation(s)
- WeiBing Wang
- Department of Anesthesiology, The Affiliated AnQing Municipal Hospitals of Anhui Medical University, AnQing, China
| | - Hui Zhou
- Department of Anesthesiology, The Affiliated AnQing Municipal Hospitals of Anhui Medical University, AnQing, China
| | - LaiBao Sun
- Department of Anesthesiology, The First Affiliated Hospitals of Sun Yat-Sen University, GuangZhou, China
| | - MeiNa Li
- Department of Anesthesiology, The First Affiliated Hospitals of Sun Yat-Sen University, GuangZhou, China
| | - FengJiao Gao
- Department of Anesthesiology, The First Affiliated Hospitals of Sun Yat-Sen University, GuangZhou, China
| | - AiJiao Sun
- Department of Cardiovascularology, The Affiliated AnQing Municipal Hospital of Anhui Medical University, AnQing, China
| | - XueNong Zou
- Department of Orthopedics, The First Affiliated Hospitals of Sun Yat-Sen University, GuangZhou, China
| |
Collapse
|
12
|
Wang C, Sun S, Jiao J, Yu X, Huang S. Effects of delta-opioid receptor agonist pretreatment on the cardiotoxicity of bupivacaine in rats. BMC Anesthesiol 2022; 22:19. [PMID: 35021986 PMCID: PMC8753886 DOI: 10.1186/s12871-022-01568-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 01/04/2022] [Indexed: 11/27/2022] Open
Abstract
Background Delta-opioid receptor is widely expressed in human and rodent hearts, and has been proved to protect cardiomyocytes against ischemia/reperfusion and heart failure. The antagonist of delta-opioid receptor could block the rescue effect of lipid emulsion against local anesthetic cardiotoxicity. However, no evidence is available for the direct effect of delta-opioid-receptor agonists on the cardiotoxicity of local anesthetics. Methods Anesthetized Sprague Dawley rats were divided into five groups. Group NS received 2 ml·kg−1·min−1 normal saline, group LE received 2 ml·kg−1·min−1 30% lipid emulsion and group BW received 0.1, 1.0, or 5.0 mg/kg BW373U86, a delta-opioid-receptor agonist, for 5 min. Then 0.5% bupivacaine was infused intravenously at a rate of 3.0 mg·kg−1·min−1 until asystole. The time of arrhythmia, 50% mean arterial pressure-, 50% heart rate-reduction and asystole were recorded, and the dose of bupivacaine at each time point was calculated. Results All three different doses of BW373U86 did not affect the arrhythmia, 50% mean arterial pressure-reduction, 50% heart rate-reduction and asystole dose of bupivacaine compared with group NS. 30% LE significantly increased the bupivacaine threshold of 50% mean arterial pressure-reduction (17.9 [15.4–20.7] versus 7.2 [5.9–8.7], p = 0.018), 50% heart rate-reduction (18.7 ± 4.2 versus 8.8 ± 1.7, p < 0.001) and asystole (26.5 [21.0–29.1] versus 11.3 [10.7–13.4], p = 0.008) compared with group NS. There was no difference between group LE and group NS in the arrhythmia dose of bupivacaine (9.9 [8.9–11.7] versus 5.6 [4.5–7.0], p = 0.060). Conclusions Our data show that BW373U86 does not affect the cardiotoxicity of bupivacaine compared with NS control in rats. 30% LE pretreatment protects the myocardium against bupivacaine-induced cardiotoxicity.
Collapse
|
13
|
Melatonin Attenuates Ropivacaine-Induced Apoptosis by Inhibiting Excessive Mitophagy Through the Parkin/PINK1 Pathway in PC12 and HT22 Cells. Inflammation 2022; 45:725-738. [PMID: 34994877 DOI: 10.1007/s10753-021-01579-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/07/2021] [Indexed: 11/05/2022]
Abstract
Melatonin, as an endogenous circadian indoleamine secreted by the pineal gland, executes extensive biological functions, including antioxidant, anti-inflammatory, anti-tumor, and neuroprotective effects. Although melatonin has been reported to serve as a potential therapeutic against many nerve injury diseases, its effect on ropivacaine-induced neurotoxicity remains obscure. Our research aimed to explore the impact and mechanism of melatonin on ropivacaine-induced neurotoxicity. Our results showed that melatonin pretreatment protected the cell viability, morphology, and apoptosis of PC12 and HT22 cells, and it also improved ropivacaine-induced mitochondrial dysfunction and the activation of mitophagy. In addition, we found that autophagy activation with rapamycin significantly weakened the protective effect of melatonin against ropivacaine-induced apoptosis, whereas autophagy inhibition with 3-MA enhanced the effect of melatonin. We also detected the activation of Parkin and PINK1, a canonical mechanism for mitophagy regulation, and results shown that melatonin downregulated the expression of Parkin and PINK1, and upregulated Tomm20 and COXIV proteins, so that those results indicated that melatonin protected ropivacaine-induced apoptosis through suppressing excessive mitophagy by inhibiting the Parkin/PINK1 pathway. Melatonin may be a useful potential therapeutic agent against ropivacaine-induced neurotoxicity.
Collapse
|
14
|
Wei CC, Yang NC, Huang CW. Zearalenone Induces Dopaminergic Neurodegeneration via DRP-1-Involved Mitochondrial Fragmentation and Apoptosis in a Caenorhabditis elegans Parkinson's Disease Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12030-12038. [PMID: 34586801 DOI: 10.1021/acs.jafc.1c05836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The contamination of mycotoxin zearalenone (ZEN) in foods has been reported worldwide, resulting in potential risks to food safety. However, the toxic mechanism of ZEN on neurodegenerative diseases has not been fully elucidated. Therefore, this study conducted in vivo ZEN neurotoxicity assessment on Parkinson's disease (PD)-related dopaminergic neurodegeneration and mitochondrial dysfunction using Caenorhabditis elegans. The results demonstrated that dopaminergic neuron damage was induced by ZEN exposure (1.25, 10, and 50 μM), and dopaminergic neuron-related behaviors were adversely affected subsequently. Additionally, the mitochondrial fragmentation was significantly increased by ZEN exposure. Moreover, upregulated expression of mitochondrial fission and cell apoptosis-related genes (drp-1, egl-1, ced-4, and ced-3) revealed the crucial role of DRP-1 on ZEN-induced neurotoxicity, which was further confirmed by drp-1 mutant and RNAi assays. In conclusion, our study indicates ZEN-induced dopaminergic neurodegeneration via DRP-1-involved mitochondrial fragmentation and apoptosis, which might cause harmful effects on PD-related symptoms.
Collapse
Affiliation(s)
- Chia-Cheng Wei
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 100, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 100, Taiwan
| | - Nien-Chieh Yang
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 100, Taiwan
| | - Chi-Wei Huang
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 100, Taiwan
| |
Collapse
|
15
|
Yu X, Xia L, Zhang S, Zhou G, Li Y, Liu H, Hou C, Zhao Q, Dong L, Cui Y, Zeng Q, Wang A, Liu L. Fluoride exposure and children's intelligence: Gene-environment interaction based on SNP-set, gene and pathway analysis, using a case-control design based on a cross-sectional study. ENVIRONMENT INTERNATIONAL 2021; 155:106681. [PMID: 34098334 DOI: 10.1016/j.envint.2021.106681] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Excessive fluoride exposure has been associated with intelligence loss, but little is known about gene-fluoride interactions on intelligence at SNP-set, gene and pathway level. OBJECTIVES Here we conducted a population-based study in Chinese school-aged children to estimate the associations of fluoride from internal and external exposures with intelligence as well as to explore the gene-fluoride interactions on intelligence at SNP-set, gene and neurodevelopmental pathway level. METHODS A total of 952 resident children aged 7 to 13 were included in the current study. The fluoride contents in drinking water, urine, hair and nail were measured using the ion-selective electrode method. LASSO Binomial regression was conducted to screen the intelligence-related SNP-set. The gene-fluoride interactions at gene and pathway levels were detected by the Adaptive Rank Truncated Product method. RESULTS The probability of high intelligence was inversely correlated with fluoride contents in water, urine, hair and nail (all P < 0.001). The SNP-set based on rs3788319, rs1879417, rs57377675, rs11556505 and rs7187776 was related to high intelligence (P = 0.001) alone and by interaction with water, urinary and hair fluoride (P = 0.030, 0.040, 0.010), separately. In gene level, CLU and TOMM40 interacted with hair fluoride (both P = 0.017) on intelligence. In pathway level, Alzheimer disease pathway, metabolic pathway, signal transduction pathway, sphingolipid signaling pathway and PI3K-AKT signaling pathway interacted with fluoride on intelligence in men. CONCLUSIONS Our study suggests that fluoride is inversely associated with intelligence. Moreover, the interactions of fluoride with mitochondrial function-related SNP-set, genes and pathways may also be involved in high intelligence loss.
Collapse
Affiliation(s)
- Xingchen Yu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Lu Xia
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Shun Zhang
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Guoyu Zhou
- Department of Environment Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Yonggang Li
- Tianjin Baodi District Centers for Disease Control and Prevention, Tianjin, PR China
| | - Hongliang Liu
- Tianjin Centers for Disease Control and Prevention, Tianjin, PR China
| | - Changchun Hou
- Tianjin Centers for Disease Control and Prevention, Tianjin, PR China
| | - Qian Zhao
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Lixin Dong
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yushan Cui
- Tianjin Centers for Disease Control and Prevention, Tianjin, PR China
| | - Qiang Zeng
- Tianjin Centers for Disease Control and Prevention, Tianjin, PR China
| | - Aiguo Wang
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Li Liu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
16
|
Zeng L, Li A, Zhang Z, Zhang F, Chen H, Wang Y, Ding X, Luo H. Ropivacaine Induces Cell Cycle Arrest in the G0/G1 Phase and Apoptosis of PC12 Cells via Inhibiting Mitochondrial STAT3 Translocation. Inflammation 2021; 44:2362-2376. [PMID: 34417665 DOI: 10.1007/s10753-021-01508-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/24/2021] [Indexed: 11/25/2022]
Abstract
STAT3 has neuroprotective effect via non-canonical activation and mitochondrial translocation, but its effect on ropivacaine-induced neurotoxicity remains unclear. Our previous study revealed that apoptosis was an important mechanism of ropivacaine-induced neurotoxicity; this study is to illustrate the relationship between STAT3 with ropivacaine-induced apoptosis. Those results showed that ropivacaine treatment decreased cell viability, induced cell cycle arrest in the G0/G1 phase, apoptosis, oxidative stress, and mitochondrial dysfunction in PC12 cells. Moreover, ropivacaine decreased the phosphorylated levels of STAT3 at Ser727 and downregulated the expression of STAT3 upstream gene IL-6. The mitochondrial translocation of STAT3 was also hindered by ropivacaine. To further illustrate the connection of STAT3 protein structure with ropivacaine, the autodock-vina was used to examine the interaction between STAT3 and ropivacaine, and the results showed that ropivacaine could bind to STAT3's proline site and other sites. In addition, the activator and inhibitor of mitoSTAT3 translocation were used to demonstrate it was involved in ropivacaine-induced apoptosis; the results showed that enhancing the mitochondrial STAT3 translocation could prevent ropivacaine-induced apoptosis. Finally, the expression of p-STAT3 and the levels of apoptosis in the spinal cord were also detected; the results were consistent with the cell experiment; ropivacaine decreased the expression of p-STAT3 protein and increased the levels of apoptosis in the spinal cord. We demonstrated that ropivacaine induced apoptosis by inhibiting the phosphorylation of STAT3 at Ser727 and the mitochondrial STAT3 translocation. This effect was reversed by the activation of the mitochondrial STAT3 translocation.
Collapse
Affiliation(s)
- Lian Zeng
- Department of Anesthesiology, Xiangyang Key Laboratory of Movement Disorders, Xiangyang No.1 People's Hospital, Hubei Clinical Research Center of Parkinson's Disease, Hubei University of Medicine, Hubei, China
| | - Aohan Li
- Department of Anesthesiology, Xiangyang Key Laboratory of Movement Disorders, Xiangyang No.1 People's Hospital, Hubei Clinical Research Center of Parkinson's Disease, Hubei University of Medicine, Hubei, China
| | - Zhen Zhang
- Department of Anesthesiology, Xiangyang Key Laboratory of Movement Disorders, Xiangyang No.1 People's Hospital, Hubei Clinical Research Center of Parkinson's Disease, Hubei University of Medicine, Hubei, China
| | - Fuyu Zhang
- Department of Anesthesiology, Xiangyang Key Laboratory of Movement Disorders, Xiangyang No.1 People's Hospital, Hubei Clinical Research Center of Parkinson's Disease, Hubei University of Medicine, Hubei, China
| | - Huaxian Chen
- Department of Oncology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Hubei, China
| | - Ying Wang
- Department of Anesthesiology, Xiangyang Key Laboratory of Movement Disorders, Xiangyang No.1 People's Hospital, Hubei Clinical Research Center of Parkinson's Disease, Hubei University of Medicine, Hubei, China
| | - Xudong Ding
- Department of Oncology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Hubei, China
| | - Huiyu Luo
- Department of Anesthesiology, Xiangyang Key Laboratory of Movement Disorders, Xiangyang No.1 People's Hospital, Hubei Clinical Research Center of Parkinson's Disease, Hubei University of Medicine, Hubei, China.
- Department of Rehabilitation Medicine, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Hubei, China.
| |
Collapse
|
17
|
Zeng L, Zhang F, Zhang Z, Xu M, Xu Y, Liu Y, Xu H, Sun X, Sang M, Luo H. P53 inhibitor pifithrin-α inhibits ropivacaine-induced neuronal apoptosis via the mitochondrial apoptosis pathway. J Biochem Mol Toxicol 2021; 35:e22822. [PMID: 34091999 DOI: 10.1002/jbt.22822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/09/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
The neurotoxicity of local anesthetics (LAs) has attracted more and more attention, However, they lack preventive and therapeutic measures. Many studies have shown that apoptosis plays an important role in the process of LA-induced neurotoxicity. As an important signaling molecule to activate apoptosis, p53 has been proved to be involved in the neurotoxicity induced by LAs, but the mechanism is unclear. In this study, we explored the effect of pifithrin-α (PFT-α), a p53 inhibitor, on apoptosis by ropivacaine (Rop) in vivo and in vitro. Cell viability and apoptosis detected by CCK-8 and a JC-1 apoptosis detection kit, the changes of spinal cord structure observed after hematoxylin and eosin staining, apoptosis of the spinal cord measured by terminal deoxynucleotidyl transferase dUTP nick end labeling staining, behavioral assessment of the nerve Injury evaluated by the detection of sciatic nerve conduction velocity (SNCV) andmechanical withdrawal threshold (MWT), the expression of p53 and many apoptosis-related genes included Bax, Bcl-2, and caspase-3 detected by quantitative real-time polymerase chain reaction, Western blot analysis, immunofluorescence, and immunohistochemistry. Results showed that PC12 cell viability decreased because of Rop, but the pretreatment of PFT-α could protect it. And PFT-α reduced the injuries in the spinal cord by Rop included vacuoles or edema. The results of immunofluorescence and immunohistochemistry testing showed that PFT-α inhibited the p53 protein upregulated by Rop. Apoptosis rate and many proapoptotic genes include p53, Bax, caspase-3 messenger RNA, and proteins were increased by Rop, but PFT-α could decrease it. In conclusion, PFT-α inhibited cell apoptosis and spinal cord injuries induced by Rop.
Collapse
Affiliation(s)
- Lian Zeng
- Department of Anesthesiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China.,Hubei Clinical Research Center of Parkinson's disease, Xiangyang No.1 People s Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Fuyu Zhang
- Department of Anesthesiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Zhen Zhang
- Department of Anesthesiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Min Xu
- Department of Anesthesiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Yang Xu
- Department of Anesthesiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Ying Liu
- Department of Anesthesiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Hongxia Xu
- Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Xiaodong Sun
- Hubei Clinical Research Center of Parkinson's disease, Xiangyang No.1 People s Hospital, Hubei University of Medicine, Xiangyang, Hubei, China.,Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Ming Sang
- Hubei Clinical Research Center of Parkinson's disease, Xiangyang No.1 People s Hospital, Hubei University of Medicine, Xiangyang, Hubei, China.,Central Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Huiyu Luo
- Department of Anesthesiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| |
Collapse
|
18
|
Spitzer D, Wenger KJ, Neef V, Divé I, Schaller-Paule MA, Jahnke K, Kell C, Foerch C, Burger MC. Local Anesthetic-Induced Central Nervous System Toxicity during Interscalene Brachial Plexus Block: A Case Series Study of Three Patients. J Clin Med 2021; 10:jcm10051013. [PMID: 33801401 PMCID: PMC7958619 DOI: 10.3390/jcm10051013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/11/2021] [Accepted: 02/24/2021] [Indexed: 12/22/2022] Open
Abstract
Local anesthetics are commonly administered by nuchal infiltration to provide a temporary interscalene brachial plexus block (ISB) in a surgical setting. Although less commonly reported, local anesthetics can induce central nervous system toxicity. In this case study, we present three patients with acute central nervous system toxicity induced by local anesthetics applied during ISB with emphasis on neurological symptoms, key neuroradiological findings and functional outcome. Medical history, clinical and imaging findings, and outcome of three patients with local anesthetic-induced toxic left hemisphere syndrome during left ISB were analyzed. All patients were admitted to our neurological intensive care unit between November 2016 and September 2019. All three patients presented in poor clinical condition with impaired consciousness and left hemisphere syndrome. Electroencephalography revealed slow wave activity in the affected hemisphere of all patients. Seizure activity with progression to status epilepticus was observed in one patient. In two out of three patients, cortical FLAIR hyperintensities and restricted diffusion in the territory of the left internal carotid artery were observed in magnetic resonance imaging. Assessment of neurological severity scores revealed spontaneous partial reversibility of neurological symptoms. Local anesthetic-induced CNS toxicity during ISB can lead to severe neurological impairment and anatomically variable cerebral lesions.
Collapse
Affiliation(s)
- Daniel Spitzer
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, 60528 Frankfurt, Germany;
- Department of Neurology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt, Germany; (I.D.); (M.A.S.-P.); (K.J.); (C.K.); (C.F.)
| | - Katharina J. Wenger
- Institute of Neuroradiology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt, Germany;
| | - Vanessa Neef
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany;
| | - Iris Divé
- Department of Neurology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt, Germany; (I.D.); (M.A.S.-P.); (K.J.); (C.K.); (C.F.)
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt, Germany
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt, Germany
| | - Martin A. Schaller-Paule
- Department of Neurology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt, Germany; (I.D.); (M.A.S.-P.); (K.J.); (C.K.); (C.F.)
| | - Kolja Jahnke
- Department of Neurology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt, Germany; (I.D.); (M.A.S.-P.); (K.J.); (C.K.); (C.F.)
| | - Christian Kell
- Department of Neurology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt, Germany; (I.D.); (M.A.S.-P.); (K.J.); (C.K.); (C.F.)
| | - Christian Foerch
- Department of Neurology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt, Germany; (I.D.); (M.A.S.-P.); (K.J.); (C.K.); (C.F.)
| | - Michael C. Burger
- Department of Neurology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt, Germany; (I.D.); (M.A.S.-P.); (K.J.); (C.K.); (C.F.)
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt, Germany
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute (FCI), 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt, Germany
- Correspondence: ; Tel.: +49-69-6301-87711
| |
Collapse
|
19
|
Mitochondrial abnormalities in neurodegenerative models and possible interventions: Focus on Alzheimer's disease, Parkinson's disease, Huntington's disease. Mitochondrion 2020; 55:14-47. [PMID: 32828969 DOI: 10.1016/j.mito.2020.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/22/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
Mitochondrial abnormalities in the brain are considered early pathological changes in neurogenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). The mitochondrial dysfunction in the brain can be induced by toxic proteins, including amyloid-beta (Aβ), phosphorylated tau, alpha-synuclein (α-syn) and mutant huntingtin (mtHTT). These proteins cause mitochondrial genome damage, increased oxidative stress, decreased mitochondrial membrane permeability, and diminished ATP production. Consequently, synaptic dysfunction, synaptic loss, neuronal apoptosis, and ultimately cognitive impairment are exhibited. Therefore, the restoration of mitochondrial abnormalities in the brain is an alternative intervention to delay the progression of neurodegenerative diseases in addition to reducing the level of toxic proteins, especially Aβ, and restored synaptic dysfunction by interventions. Here we comprehensively review mitochondrial alterations in the brain of neurodegenerative models, specifically AD, PD and HD, from both in vitro and in vivo studies. Additionally, the correlation between mitochondrial changes, cognitive function, and disease progression from in vivo studies is described. This review also summarizes interventions that possibly attenuate mitochondrial abnormalities in AD, PD and HD models from both in vitro and in vivo studies. This may lead to the introduction of novel therapies that target on brain mitochondria to delay the progression of AD, PD and HD.
Collapse
|