1
|
Amir M, Jeevithan L, Barkat M, Fatima SH, Khan M, Israr S, Naseer F, Fayyaz S, Elango J, Wu W, Maté Sánchez de Val JE, Rahman SU. Advances in Regenerative Dentistry: A Systematic Review of Harnessing Wnt/β-Catenin in Dentin-Pulp Regeneration. Cells 2024; 13:1153. [PMID: 38995004 PMCID: PMC11240772 DOI: 10.3390/cells13131153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
Dentin pulp has a complex function as a major unit in maintaining the vitality of teeth. In this sense, the Wnt/β-Catenin pathway has a vital part in tooth development, maintenance, repair, and regeneration by controlling physiological activities such as growth, differentiation, and migration. This pathway consists of a network of proteins, such as Wnt signaling molecules, which interact with receptors of targeted cells and play a role in development and adult tissue homeostasis. The Wnt signals are specific spatiotemporally, suggesting its intricate mechanism in development, regulation, repair, and regeneration by the formation of tertiary dentin. This review provides an overview of the recent advances in the Wnt/β-Catenin signaling pathway in dentin and pulp regeneration, how different proteins, molecules, and ligands influence this pathway, either upregulating or silencing it, and how it may be used in the future for clinical dentistry, in vital pulp therapy as an effective treatment for dental caries, as an alternative approach for root canal therapy, and to provide a path for therapeutic and regenerative dentistry.
Collapse
Affiliation(s)
- Mariam Amir
- Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Lakshmi Jeevithan
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China (W.W.)
| | - Maham Barkat
- Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Syeda Habib Fatima
- Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Malalai Khan
- Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Sara Israr
- Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Fatima Naseer
- Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Sarmad Fayyaz
- Department of Dental Materials Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| | - Jeevithan Elango
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China (W.W.)
- Center of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM—Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain;
| | - Wenhui Wu
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China (W.W.)
| | - José Eduardo Maté Sánchez de Val
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM—Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain;
| | - Saeed Ur Rahman
- Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Pakistan
| |
Collapse
|
2
|
Kim Y, Park HJ, Kim MK, Kim YI, Kim HJ, Bae SK, Nör JE, Bae MK. Naringenin stimulates osteogenic/odontogenic differentiation and migration of human dental pulp stem cells. J Dent Sci 2023; 18:577-585. [PMID: 37021242 PMCID: PMC10068380 DOI: 10.1016/j.jds.2022.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
Background/purpose Naringenin, a naturally occurring flavanone in citrus fruits, regulates bone formation by bone marrow-derived mesenchymal stem cells. The purpose of this study was to characterize the effects of naringenin on some biological behaviors of human dental pulp stem cells (HDPSCs). Materials and methods HDPSCs were cultured in osteogenic differentiation medium and osteo/odontogenic differentiation and mineralization were analyzed by alkaline phosphatase (ALP) staining and Alizarin Red S (ARS) staining. The migration of HDPSCs was evaluated by transwell chemotactic migration assays and scratch wound healing migration assay. Using tooth slice/scaffold model, we assessed the in vivo odontogenic differentiation potential of HDPSCs. Results We have demonstrated that naringenin increases the osteogenic/odontogenic differentiation of HDPSCs through regulation of osteogenic-related proteins and the migratory ability of HDPSCs through stromal cell derived factor-1 (SDF-1)/C-X-C chemokine receptor type 4 (CXCR4) axis. Moreover, naringenin promotes the expression of dentin matrix acidic phosphoprotein-1 (DMP-1) and dentin sialophosphoprotein (DSPP) in HDPSCs seeded on tooth slice/scaffolds that are subcutaneously implanted into immunodeficient mice. Conclusion Our present study suggests that naringenin promotes migration and osteogenic/odontogenic differentiation of HDPSCs and may serve as a promising candidate in dental tissue engineering and bone regeneration.
Collapse
Affiliation(s)
- Yeon Kim
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan, South Korea
- Periodontal Disease Signaling Network Research Center (MRC), Pusan National University, Yangsan, South Korea
- Dental and Life Science Institute, Pusan National University, Yangsan, South Korea
| | - Hyun-Joo Park
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan, South Korea
- Periodontal Disease Signaling Network Research Center (MRC), Pusan National University, Yangsan, South Korea
- Dental and Life Science Institute, Pusan National University, Yangsan, South Korea
| | - Mi-Kyoung Kim
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan, South Korea
- Periodontal Disease Signaling Network Research Center (MRC), Pusan National University, Yangsan, South Korea
| | - Yong-Il Kim
- Department of Orthodontics, School of Dentistry, Pusan National University, Yangsan, South Korea
| | - Hyung Joon Kim
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan, South Korea
- Periodontal Disease Signaling Network Research Center (MRC), Pusan National University, Yangsan, South Korea
- Dental and Life Science Institute, Pusan National University, Yangsan, South Korea
| | - Soo-Kyung Bae
- Periodontal Disease Signaling Network Research Center (MRC), Pusan National University, Yangsan, South Korea
- Dental and Life Science Institute, Pusan National University, Yangsan, South Korea
- Department of Dental Pharmacology, School of Dentistry, Pusan National University, Yangsan, South Korea
| | - Jacques E. Nör
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Moon-Kyoung Bae
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan, South Korea
- Periodontal Disease Signaling Network Research Center (MRC), Pusan National University, Yangsan, South Korea
- Dental and Life Science Institute, Pusan National University, Yangsan, South Korea
| |
Collapse
|
3
|
Khalid M, Hodjat M, Baeeri M, Rahimifard M, Bayrami Z, Abdollahi M. Lead inhibits the odontogenic differentiation potential of dental pulp stem cells by affecting WNT1/β-catenin signaling and related miRNAs expression. Toxicol In Vitro 2022; 83:105422. [PMID: 35738543 DOI: 10.1016/j.tiv.2022.105422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/04/2022] [Accepted: 06/16/2022] [Indexed: 11/19/2022]
Abstract
Lead (Pb) is ubiquitous in environment that accumulates in teeth and calcified tissues from where it releases gradually with aging and adversely affects dental health. This study aimed to determine the effect of Pb exposure on odontogenic differentiation potential of isolated human dental pulp stem cells and investigate the possible underlying epigenetic factors. In the absence of Pb exposure, stem cells displayed significant odontogenic markers including elevated Alkaline Phosphatase (ALP) activity, Alizarin red staining intensity, and increased expression of odontogenic DMP1 and DSPP genes. Exposure to 60 μM Pb resulted in reduced ALP activity and calcium deposition. Also, diminished expression of RUNX2, DMP1, and DSPP, as well as Wnt signaling mediators including WNT1, and β-catenin were detected. The expression of Wnt signaling related microRNAs, miRNA-139-5p and miRNA-142-3p, on the other hand, were shown to have a significant increase. We concluded that Pb could adversely affect the odontogenic differentiation potential of dental pulp stem cell. The underlying mechanism might related to Pb-induced epigenetic dysregulation of WNT1/β-catenin pathway-related miRNAs leading to down-regulation of Wnt/β-catenin related odontogenic genes and eventually impaired odontogenic differentiation process.
Collapse
Affiliation(s)
- Madiha Khalid
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahshid Hodjat
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Maryam Baeeri
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Zahra Bayrami
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
4
|
Abstract
The development and repair of dentin are strictly regulated by hundreds of genes. Abnormal dentin development is directly caused by gene mutations and dysregulation. Understanding and mastering this signal network is of great significance to the study of tooth development, tissue regeneration, aging, and repair and the treatment of dental diseases. It is necessary to understand the formation and repair mechanism of dentin in order to better treat the dentin lesions caused by various abnormal properties, whether it is to explore the reasons for the formation of dentin defects or to develop clinical drugs to strengthen the method of repairing dentin. Molecular biology of genes related to dentin development and repair are the most important basis for future research.
Collapse
Affiliation(s)
- Shuang Chen
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, P. R. China.,Department of Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, P. R. China
| | - Han Xie
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Shouliang Zhao
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Shuai Wang
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, P. R. China
| | - Xiaoling Wei
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, P. R. China.,Department of Endodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, P. R. China
| | - Shangfeng Liu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, P. R. China
| |
Collapse
|
5
|
Pan Y, Lu T, Peng L, Zeng Q, Huang X, Yao X, Wu B, Xiong F. Functional Analysis of Ectodysplasin-A Mutations in X-Linked Nonsyndromic Hypodontia and Possible Involvement of X-Chromosome Inactivation. Stem Cells Int 2021; 2021:7653013. [PMID: 34545288 PMCID: PMC8449729 DOI: 10.1155/2021/7653013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/10/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Mutations of the Ectodysplasin-A (EDA) gene are generally associated with syndrome hypohidrotic ectodermal dysplasia or nonsyndromic tooth agenesis. The influence of EDA mutations on dentinogenesis and odontoblast differentiation has not been reported. The aim of this study was to identify genetic clues for the causes of familial nonsyndromic oligodontia and explore the underlying mechanisms involved, while focusing on the role of human dental pulp stem cells (hDPSCs). MATERIALS AND METHODS Candidate gene sequences were obtained by PCR amplification and Sanger sequencing. Functional analysis was conducted, and the pathogenesis associated with EDA mutations in hDPSCs was investigated to explore the impact of the identified mutation on the phenotype. Capillary electrophoresis (CE) was used to detect X-chromosome inactivation (XCI) in the blood of female carriers. RESULTS In this study, we identified an EDA mutation in a Chinese family: the missense mutation c.1013C>T (Thr338Met). Transfection of hDPSCs with a mutant EDA lentivirus decreased the expression of EDA and dentin sialophosphoprotein (DSPP) compared with transfection of control EDA lentivirus. Mechanistically, mutant EDA inhibited the activation of the NF-κB pathway. The CE results showed that symptomatic female carriers had a skewed XCI with a preferential inactivation of the X chromosome that carried the normal allele. CONCLUSIONS In summary, we demonstrated that EDA mutations result in nonsyndromic tooth agenesis in heterozygous females and that, mechanistically, EDA regulates odontogenesis through the NF-κB signalling pathway in hDPSCs. Due to the large heterogeneity of tooth agenesis, this study provided a genetic basis for individuals who exhibit similar clinical phenotypes.
Collapse
Affiliation(s)
- Yuhua Pan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ting Lu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ling Peng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qi Zeng
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiangyu Huang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xinchen Yao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, 143 Dongzong Road, Pingshan District, Shenzhen 518118, China
| | - Fu Xiong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong, China
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
6
|
Yin JY, Luo XH, Feng WQ, Miao SH, Ning TT, Lei Q, Jiang T, Ma DD. Multidifferentiation potential of dental-derived stem cells. World J Stem Cells 2021; 13:342-365. [PMID: 34136070 PMCID: PMC8176842 DOI: 10.4252/wjsc.v13.i5.342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/10/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Tooth-related diseases and tooth loss are widespread and are a major public health issue. The loss of teeth can affect chewing, speech, appearance and even psychology. Therefore, the science of tooth regeneration has emerged, and attention has focused on tooth regeneration based on the principles of tooth development and stem cells combined with tissue engineering technology. As undifferentiated stem cells in normal tooth tissues, dental mesenchymal stem cells (DMSCs), which are a desirable source of autologous stem cells, play a significant role in tooth regeneration. Researchers hope to reconstruct the complete tooth tissues with normal functions and vascularization by utilizing the odontogenic differentiation potential of DMSCs. Moreover, DMSCs also have the ability to differentiate towards cells of other tissue types due to their multipotency. This review focuses on the multipotential capacity of DMSCs to differentiate into various tissues, such as bone, cartilage, tendon, vessels, neural tissues, muscle-like tissues, hepatic-like tissues, eye tissues and glands and the influence of various regulatory factors, such as non-coding RNAs, signaling pathways, inflammation, aging and exosomes, on the odontogenic/osteogenic differentiation of DMSCs in tooth regeneration. The application of DMSCs in regenerative medicine and tissue engineering will be improved if the differentiation characteristics of DMSCs can be fully utilized, and the factors that regulate their differentiation can be well controlled.
Collapse
Affiliation(s)
- Jing-Yao Yin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Xing-Hong Luo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Wei-Qing Feng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Sheng-Hong Miao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Ting-Ting Ning
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Qian Lei
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Tao Jiang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Dan-Dan Ma
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| |
Collapse
|
7
|
Deng Z, Yan W, Dai X, Chen M, Qu Q, Wu B, Zhao W. N-Cadherin Regulates the Odontogenic Differentiation of Dental Pulp Stem Cells via β-Catenin Activity. Front Cell Dev Biol 2021; 9:661116. [PMID: 33859987 PMCID: PMC8042212 DOI: 10.3389/fcell.2021.661116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/11/2021] [Indexed: 12/22/2022] Open
Abstract
Dental pulp stem cell (DPSC) transplantation has shown new prospects in dental pulp regeneration, and is of great significance in the treatment of pulpitis and pulp necrosis. The fate and regenerative potential of stem cells are dependent, to a great extent, on their microenvironment, which is composed of various tissue components, cell populations, and soluble factors. N-cadherin-mediated cell–cell interaction has been implicated as an important factor in controlling the cell-fate commitment of mesenchymal stem cells. In this study, the effect of N-cadherin on odontogenic differentiation of DPSCs and the potential underlying mechanisms, both in vitro and in vivo, was investigated using a cell culture model and a subcutaneous transplantation mouse model. It was found that the expression of N-cadherin was reversely related to the expression of odontogenic markers (dentin sialophosphoprotein, DSPP, and runt-related transcription factor 2, Runx2) during the differentiation process of DPSCs. Specific shRNA-mediated knockdown of N-cadherin expression in DPSCs significantly increased the expression of DSPP and Runx2, alkaline phosphatase (ALP) activity, and the formation of mineralized nodules. Notably, N-cadherin silencing promoted nucleus translocation and accumulation of β-catenin. Inhibition of β-catenin by a specific inhibitor XAV939, reversed the facilitating effects of N-cadherin downregulation on odontogenic differentiation of DPSCs. In addition, knockdown of N-cadherin promoted the formation of odontoblast-like cells and collagenous matrix in β-tricalcium phosphate/DPSCs composites transplanted into mice. In conclusion, N-cadherin acted as a negative regulator via regulating β-catenin activity during odontogenic differentiation of DPSCs. These data may help to guide DPSC behavior by tuning the N-cadherin-mediated cell–cell interactions, with implications for pulp regeneration.
Collapse
Affiliation(s)
- Zilong Deng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenjuan Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xingzhu Dai
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ming Chen
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Qian Qu
- Stomatology Healthcare Center, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Buling Wu
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| | - Wanghong Zhao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Zhou L, Yang W, Yao E, Li H, Wang J, Wang K, Zhong X, Peng Z, Huang X. MicroRNA-488-3p Regulates Neuronal Cell Death in Cerebral Ischemic Stroke Through Vacuolar Protein Sorting 4B (VPS4B). Neuropsychiatr Dis Treat 2021; 17:41-55. [PMID: 33442254 PMCID: PMC7800712 DOI: 10.2147/ndt.s255666] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 11/23/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Ischemic stroke, which often occurs with high morbidity, disability, and mortality, is a main cause of brain disease. In various types of human diseases, it is found that microRNAs (miRNAs) are considered as gene regulators. Increasing studies have proved that fluctuation of miRNAs, in the pathologies of ischemic stroke, plays a vital role. However, the accurate regulatory mechanism of cerebral ischemic stroke by miRNAs is still unclear. In this research, we investigated the inhibition mechanism of miR-488-3p on neuronal death through targeting vacuolar protein sorting 4B (VPS4B) in cerebral ischemia/reperfusion (I/R) injury. METHODS Western blot and qRT-PCR were utilized to detect the miR-488-3p level and VPS4B expression. The cell counting kit-8 (CCK-8) assay was utilized to measure the function of miR-488-3p in cell death induced by oxygen glucose deprivation/reoxygenation (OGD/R). After middle cerebral artery occlusion/reperfusion (MCAO/R), the impact of miR-488-3p on infarct volume in mouse brain was assessed. The targets of miR-488-3p were confirmed by luciferase analysis and bioinformatics software. RESULTS The miR-488-3p level remarkably reduced in primary neuronal cells administrated with OGD/R. Similarly, it also decreased in the mouse brain administrated with MCAO/R. Additionally, the up-regulation of miR-488-3p expression suppressed the death of neuronal cells and restrained ischemic brain infarction in ischemia-stroked mice. Besides, the results showed that VPS4B, which could be inhibited by miR-488-3p, was a direct target of miR-488-3p. This research revealed that the inhibition of VPS4B protected the neuronal cells in ischemic stroke both in vitro as well as in vivo. Meanwhile, this inhibition strengthened positive impact generated by miR-488-3p on ischemic injury. CONCLUSION Overall, miR-488-3p played a critical role on neuroprotective function via reducing VPS4B protein level. These results performed a new underlying curative target for the treatment of cerebral ischemic stroke.
Collapse
Affiliation(s)
- Li Zhou
- Department of Rehabilitation, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou510080, People’s Republic of China
| | - Wanxin Yang
- Department of Rehabilitation, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou510080, People’s Republic of China
| | - Enping Yao
- Department of Rehabilitation, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou510080, People’s Republic of China
| | - Haiyan Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou510000, People’s Republic of China
| | - Jihui Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou510000, People’s Republic of China
| | - Kun Wang
- School of Health Science, Guangdong Pharmaceutical University, Guangzhou510310, People’s Republic of China
| | - Xiaohua Zhong
- Department of Rehabilitation, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou510080, People’s Republic of China
| | - Zhongxing Peng
- Department of Neurology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou510080, People’s Republic of China
- Zhongxing Peng Department of Neurology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou510080, People’s Republic of China Email
| | - Xuming Huang
- Department of Rehabilitation, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou510080, People’s Republic of China
- Correspondence: Xuming Huang Department of Rehabilitation, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou510080, People’s Republic of ChinaTel +86-20-82804660 Email
| |
Collapse
|
9
|
VPS4B mutation impairs the osteogenic differentiation of dental follicle cells derived from a patient with dentin dysplasia type I. Int J Oral Sci 2020; 12:22. [PMID: 32737282 PMCID: PMC7395790 DOI: 10.1038/s41368-020-00088-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 01/05/2023] Open
Abstract
A splicing mutation in VPS4B can cause dentin dysplasia type I (DD-I), a hereditary autosomal-dominant disorder characterized by rootless teeth, the etiology of which is genetically heterogeneous. In our study, dental follicle cells (DFCs) were isolated and cultured from a patient with DD-I and compared with those from an age-matched, healthy control. In a previous study, this DD-I patient was confirmed to have a loss-of-function splicing mutation in VPS4B (IVS7 + 46C > G). The results from this study showed that the isolated DFCs were vimentin-positive and CK14-negative, indicating that the isolated cells were derived from the mesenchyme. DFCs harboring the VPS4B mutation had a significantly higher proliferation rate from day 3 to day 8 than control DFCs, indicating that VPS4B is involved in cell proliferation. The cells were then replenished with osteogenic medium to investigate how the VPS4B mutation affected osteogenic differentiation. Induction of osteogenesis, detected by alizarin red and alkaline phosphatase staining in vitro, was decreased in the DFCs from the DD-I patient compared to the control DFCs. Furthermore, we also found that the VPS4B mutation in the DD-I patient downregulated the expression of osteoblast-related genes, such as ALP, BSP, OCN, RUNX2, and their encoded proteins. These outcomes confirmed that the DD-I-associated VPS4B mutation could decrease the capacity of DFCs to differentiate during the mineralization process and may also impair physiological root formation and bone remodeling. This might provide valuable insights and implications for exploring the pathological mechanisms underlying DD-I root development.
Collapse
|