1
|
Qi Y, Wang X, Chen Y, Sheng L, Wu D, Leng Y, Wang X, Wang J. Protective effect of walnut active peptide against dextran sulfate sodium-induced colitis in mice based on untargeted metabolomics. Int Immunopharmacol 2024; 141:112998. [PMID: 39182265 DOI: 10.1016/j.intimp.2024.112998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/23/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic condition characterized by inflammation of the digestive tract, whose exact cause remains unknown, and its prevalence is on the rise. This study investigated the effects of a walnut-derived peptide LPLLR (LP-5) on intestinal inflammation and metabolism in IBD mice. Metabolomics revealed that LP-5 regulated the levels of metabolites, such as thalsimidine, fumagillin, and geniposide, and LP-5 could regulate several signaling pathways, such as protein digestion and absorption, aminoacyl-tRNA biosynthesis, and ABC transporters. Additionally, LP-5 alleviated dextran sulfate sodium (DSS)-induced colitis by modulating autophagy and inflammasome pathways. Western blotting demonstrated that LP-5 reduced the expressions of NLRP3, Caspase-1, ASC and IL-1β, and increased the expressions of Beclin-1 and LC3-II/LC3-I, corresponding to activation of the AMPK/mTOR/ULK1 pathway. These findings suggested that LP-5 activated autophagy in vivo to suppress inflammation and modulate metabolic substances, highlighting potential implications for gut health and the development of functional foods containing LP-5.
Collapse
Affiliation(s)
- Yuan Qi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, PR China
| | - Xuehang Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, PR China
| | - Yiming Chen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, PR China
| | - Lihan Sheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, PR China
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, PR China
| | - Yue Leng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, PR China
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, PR China
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, Jilin, PR China.
| |
Collapse
|
2
|
Zhang L, Gao X, Yang C, Liang Z, Guan D, Yuan T, Qi W, Zhao D, Li X, Dong H, Zhang H. Structural Characters and Pharmacological Activity of Protopanaxadiol-Type Saponins and Protopanaxatriol-Type Saponins from Ginseng. Adv Pharmacol Pharm Sci 2024; 2024:9096774. [PMID: 38957183 PMCID: PMC11217582 DOI: 10.1155/2024/9096774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/22/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024] Open
Abstract
Ginseng has a long history of drug application in China, which can treat various diseases and achieve significant efficacy. Ginsenosides have always been deemed important ingredients for pharmacological activities. Based on the structural characteristics of steroidal saponins, ginsenosides are mainly divided into protopanaxadiol-type saponins (PDS, mainly including Rb1, Rb2, Rd, Rc, Rh2, CK, and PPD) and protopanaxatriol-type saponins (PTS, mainly including Re, R1, Rg1, Rh1, Rf, and PPT). The structure differences between PDS and PTS result in the differences of pharmacological activities. This paper provides an overview of PDS and PTS, mainly focusing on their chemical profile, pharmacokinetics, hydrolytic metabolism, and pharmacological activities including antioxidant, antifatigue, antiaging, immunodulation, antitumor, cardiovascular protection, neuroprotection, and antidiabetes. It is intended to contribute to an in-depth study of the relationship between PDS and PTS.
Collapse
Affiliation(s)
- Lancao Zhang
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
| | - Xiang Gao
- College of PharmacyChangchun University of Chinese Medicine, Changchun 130117, China
| | - Chunhui Yang
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
- Tuina DepartmentThe Third Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun 130117, China
| | - Zuguo Liang
- College of PharmacyChangchun University of Chinese Medicine, Changchun 130117, China
| | - Dongsong Guan
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
- Quality Testing Laboratory, Haerbin Customs District 150008, Foshan, China
| | - Tongyi Yuan
- College of PharmacyChangchun University of Chinese Medicine, Changchun 130117, China
| | - Wenxiu Qi
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
| | - Haisi Dong
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
| | - He Zhang
- Northeast Asia Research Institute of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun 130117, China
- College of PharmacyChangchun University of Chinese Medicine, Changchun 130117, China
- Research Center of Traditional Chinese MedicineThe Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| |
Collapse
|
3
|
Zhang L, Gao X, Yang C, Liang Z, Guan D, Yuan T, Qi W, Zhao D, Li X, Dong H, Zhang H. Structural Characters and Pharmacological Activity of Protopanaxadiol‐Type Saponins and Protopanaxatriol‐Type Saponins from Ginseng. Adv Pharmacol Pharm Sci 2024; 2024. [DOI: org/10.1155/2024/9096774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/12/2024] [Indexed: 07/02/2024] Open
Abstract
Ginseng has a long history of drug application in China, which can treat various diseases and achieve significant efficacy. Ginsenosides have always been deemed important ingredients for pharmacological activities. Based on the structural characteristics of steroidal saponins, ginsenosides are mainly divided into protopanaxadiol‐type saponins (PDS, mainly including Rb1, Rb2, Rd, Rc, Rh2, CK, and PPD) and protopanaxatriol‐type saponins (PTS, mainly including Re, R1, Rg1, Rh1, Rf, and PPT). The structure differences between PDS and PTS result in the differences of pharmacological activities. This paper provides an overview of PDS and PTS, mainly focusing on their chemical profile, pharmacokinetics, hydrolytic metabolism, and pharmacological activities including antioxidant, antifatigue, antiaging, immunodulation, antitumor, cardiovascular protection, neuroprotection, and antidiabetes. It is intended to contribute to an in‐depth study of the relationship between PDS and PTS.
Collapse
|
4
|
Fan M, Lan X, Wang Q, Shan M, Fang X, Zhang Y, Wu D, Luo H, Gao W, Zhu D. Renal function protection and the mechanism of ginsenosides: Current progress and future perspectives. Front Pharmacol 2023; 14:1070738. [PMID: 36814491 PMCID: PMC9939702 DOI: 10.3389/fphar.2023.1070738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
Nephropathy is a general term for kidney diseases, which refers to changes in the structure and function of the kidney caused by various factors, resulting in pathological damage to the kidney, abnormal blood or urine components, and other diseases. The main manifestations of kidney disease include hematuria, albuminuria, edema, hypertension, anemia, lower back pain, oliguria, and other symptoms. Early detection, diagnosis, and active treatment are required to prevent chronic renal failure. The concept of nephropathy encompasses a wide range of conditions, including acute renal injury, chronic kidney disease, nephritis, renal fibrosis, and diabetic nephropathy. Some of these kidney-related diseases are interrelated and may lead to serious complications without effective control. In serious cases, it can also develop into chronic renal dysfunction and eventually end-stage renal disease. As a result, it seriously affects the quality of life of patients and places a great economic burden on society and families. Ginsenoside is one of the main active components of ginseng, with anti-inflammatory, anti-tumor, antioxidant, and other pharmacological activities. A variety of monomers in ginsenosides can play protective roles in multiple organs. According to the difference of core structure, ginsenosides can be divided into protopanaxadiol-type (including Rb1, Rb3, Rg3, Rh2, Rd and CK, etc.), and protopanaxatriol (protopanaxatriol)- type (including Rg1, Rg2 and Rh1, etc.), and other types (including Rg5, Rh4, Rh3, Rk1, and Rk3, etc.). All of these ginsenosides showed significant renal function protection, which can reduce renal damage in renal injury, nephritis, renal fibrosis, and diabetic nephropathy models. This review summarizes reports on renal function protection and the mechanisms of action of these ginsenosides in various renal injury models.
Collapse
Affiliation(s)
- Meiling Fan
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xintian Lan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Qunling Wang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Mengyao Shan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Xiaoxue Fang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Yegang Zhang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Donglu Wu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China,School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China
| | - Haoming Luo
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Wenyi Gao
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Wenyi Gao, ; Difu Zhu,
| | - Difu Zhu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China,*Correspondence: Wenyi Gao, ; Difu Zhu,
| |
Collapse
|
5
|
Guo J, Wang R, Min F. Ginsenoside Rg1 ameliorates sepsis-induced acute kidney injury by inhibiting ferroptosis in renal tubular epithelial cells. J Leukoc Biol 2022; 112:1065-1077. [PMID: 35774015 DOI: 10.1002/jlb.1a0422-211r] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/27/2022] [Indexed: 12/24/2022] Open
Abstract
Acute kidney injury (AKI) represents a prevailing complication of sepsis, and its onset involves ferroptosis. Ginsenoside Rg1 exerts a positive effect on kidney diseases. This study explored the action of ginsenoside Rg1 in sepsis-induced AKI (SI-AKI) by regulating ferroptosis in renal tubular epithelial cells (TECs). Sepsis rat models were established using cecal ligation and puncture (CLP) and cell models were established by treating human renal TECs (HK-2) with LPS to induce ferroptosis. Serum creatinine (SCr) and blood urea nitrogen (BUN) and urine KIM1 contents in rats were determined by ELISA kits. Kidney tissues were subjected to immunohistochemical and H&E stainings. Iron concentration, malondialdehyde (MDA), glutathione (GSH), and ferroptosis-related protein (ferritin light chain [FTL], ferritin heavy chain [FTH], GSH peroxidase 4 [GPX4], and Ferroptosis suppressor protein 1 [FSP1]) levels in kidney tissues and HK-2 cells were measured using ELISA kits and Western blotting. HK-2 cell viability was detected by cell counting kit-8, and cell death was observed via propidium iodide staining. Reactive oxygen species accumulation in cells was detected using C11 BODIPY 581/591 as a molecular probe. In CLP rats, ginsenoside Rg1 reduced SCr, BUN, KIM1, and NGAL levels, thus palliating SI-AKI. Additionally, ginsenoside Rg1 decreased iron content, FTL, FTH, and MDA levels, and elevated GPX4, FSP1, and GSH levels, thereby inhibiting lipid peroxidation and ferroptosis. Moreover, FSP1 knockdown annulled the inhibition of ginsenoside Rg1 on ferroptosis. In vitro experiments, ginsenoside Rg1 raised HK-2 cell viability and lowered iron accumulation and lipid peroxidation during ferroptosis, and its antiferroptosis activity was dependent on FSP1. Ginsenoside Rg1 alleviates SI-AKI, possibly resulting from inhibition of ferroptosis in renal TECs through FSP1.
Collapse
Affiliation(s)
- Jun Guo
- Department of Critical Care Medicine, Union Jiangbei Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Rong Wang
- Department of Critical Care Medicine, Union Jiangbei Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Fei Min
- Department of Critical Care Medicine, Union Jiangbei Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
6
|
Cheng H, Liu J, Zhang D, Wang J, Tan Y, Feng W, Peng C. Ginsenoside Rg1 Alleviates Acute Ulcerative Colitis by Modulating Gut Microbiota and Microbial Tryptophan Metabolism. Front Immunol 2022; 13:817600. [PMID: 35655785 PMCID: PMC9152015 DOI: 10.3389/fimmu.2022.817600] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/14/2022] [Indexed: 12/19/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic and recurrent inflammatory disorder in the gastrointestinal tract. Here, we examined the pharmacological effects of ginsenoside Rg1, a natural compound with low bioavailability, on the acute experimental colitis mice induced by dextran sulfate sodium (DSS) and explored underlying mechanisms. Acute UC was induced in C57BL/6 mice by 2.5% DSS for 7 days, meanwhile, 2 mg/10 g b.w. ginsenoside Rg1 was administrated to treat the mice. Body weight, colon length, colon tissue pathology, and colon tissue inflammatory cytokines were assessed. The composition structure of gut microbiota was profiled using 16s rRNA sequencing. Global metabolomic profiling of the feces was performed, and tryptophan and its metabolites in the serum were detected. The results showed that Rg1 significantly ameliorated DSS-induced colonic injury and colonic inflammation. In addition, Rg1 also partly reversed the imbalance of gut microbiota composition caused by DSS. Rg1 intervention can regulate various metabolic pathways of gut microbiota such as valine, leucine, and isoleucine biosynthesis and vitamin B6 metabolism and the most prominent metabolic alteration was tryptophan metabolism. DSS decreased the levels of tryptophan metabolites in the serum, including indole-3-carboxaldehyde, indole-3-lactic acid, 3-indolepropionic acid, and niacinamide and Rg1 can increase the levels of these metabolites. In conclusion, the study discovered that Rg1 can protect the intestinal barrier and alleviate colon inflammation in UC mice, and the underlying mechanism is closely related to the regulation of gut microbiota composition and microbial tryptophan metabolism.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Rg1 Protects Hematopoietic Stem Cells from LiCl-Induced Oxidative Stress via Wnt Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2875583. [PMID: 35388306 PMCID: PMC8977299 DOI: 10.1155/2022/2875583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/09/2022] [Accepted: 02/11/2022] [Indexed: 11/22/2022]
Abstract
Background Ginsenoside Rg1 is a major component of ginseng with antioxidative and antiaging effects, which is a traditional Chinese medicine. In this study, we investigated the potential spillover and mechanism of action of Rg1 on LiCl-driven hematopoietic stem cell aging. Results Collect the purified Sca-1+ hematopoietic cells for differentiation ability detection and biochemical and molecular labeling. The experiment found that Rg1 plays an antiaging role in reversing the SA-β-gal staining associated with LiCl-induced hematopoietic stem cell senescence, the increase in p53 and p21 proteins, and sustained DNA damage. At the same time, Rg1 protects hematopoietic cells from the reduced differentiation ability caused by LiCl. In addition, Rg1 increased the excessive inhibition of intracellular GSK-3β protein, resulting in the maintenance of β-catenin protein levels in hematopoietic cells after LiCl treatment. Then, the target gene level of β-catenin can be maintained. Conclusions Rg1 exerts the pharmacological effect of maintaining the activity of GSK-3β in Sca-1+ hematopoietic cells, enhances the antioxidant potential of cells, improves the redox homeostasis, and thus protects cells from the decline in differentiation ability caused by aging. This study provides a potential therapeutic strategy to reduce stem cell pool failure caused by chronic oxidative damage to hematopoietic stem cells.
Collapse
|
8
|
Zhang Z, Yang K, Mao R, Zhong D, Xu Z, Xu J, Xiong M. Ginsenoside Rg1 inhibits oxidative stress and inflammation in rats with spinal cord injury via Nrf2/HO-1 signaling pathway. Neuroreport 2022; 33:81-89. [PMID: 34954769 DOI: 10.1097/wnr.0000000000001757] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES In this study, our objective was to investigate the underlying mechanism of the neuroprotective role of ginsenoside Rg1 in attenuating spinal cord injury (SCI). METHODS A rat SCI model was established and treated with ginsenoside Rg1 and nuclear factor erythroid 2-related factor2(Nrf2) inhibitor all-trans retinoic acid (ATRA). The protective effects of ginsenoside Rg1 were evaluated by Basso, Beattie and Bresnahan (BBB) scale, hematoxylin/eosin staining, ELISA assay, western blotting and quantitative reverse transcription PCR (RT-qPCR). RESULTS Ginsenoside Rg1 alleviated neuronal edema and bleeding in the injured spinal cord, reduced inflammatory cell infiltration and cell necrosis, further repaired the injured spinal cord structure, improved BBB motor score in the SCI rat model and improved hind limb motor function. Meanwhile, ginsenoside Rg1 significantly increased the content of antioxidant enzymes superoxide dismutase and glutathione, and inhibited the production of oxidative marker malondialdehyde. In addition, ginsenoside Rg1also significantly inhibits the activities of the inflammatory factors tumor necrosis factor-α, interleukin-1β (IL-1β) and interleukin-6 (IL-6) to reduce the inflammatory response after trauma. Furthermore, western blot and RT-qPCR also suggested that ginsenoside Rg1 could activate the protein expression of Nrf2 and heme oxygenase-1 (HO-1) after SCI, and the inhibition of ATRA on these improvements further verified the neuroprotective effect of Nrf2 and HO-1 in ginsenoside Rg1 on SCI. CONCLUSION Ginsenoside Rg1 has a neuroprotective effect on SCI and can improve motor dysfunction caused by injury. The underlying mechanism may play antioxidative stress and anti-inflammatory effect by regulating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
| | | | - Rui Mao
- Neurology, Sinopharm Dongfeng General Hospital
| | | | | | - Jie Xu
- Department of Institute of Clinical Medcine, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | | |
Collapse
|
9
|
Zhu L, Xu L, Dou D, Huang L. The distinct of chemical profiles of mountainous forest cultivated ginseng and garden ginseng based on ginsenosides and oligosaccharides. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Jin D, Zhang Y, Zhang Y, Duan L, Zhou R, Duan Y, Sun Y, Lian F, Tong X. Panax Ginseng C.A.Mey. as Medicine: The Potential Use of Panax Ginseng C.A.Mey. as a Remedy for Kidney Protection from a Pharmacological Perspective. Front Pharmacol 2021; 12:734151. [PMID: 34512359 PMCID: PMC8426624 DOI: 10.3389/fphar.2021.734151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022] Open
Abstract
Panax ginseng C.A.Mey. has been widely consumed as food/diet supplements from natural sources, and its therapeutic properties have also aroused widespread concern. Therapeutic properties of Panax ginseng C.A.Mey. such as anti-inflammatory, ameliorating chronic inflammation, enhancing the immunity, resisting the oxidation again, and regulating the glucose and lipid metabolism have been widely reported. Recent years, lots of interesting studies have reported the potential use of Panax ginseng C.A.Mey. in the management of DKD. DKD has become the leading cause of end-stage renal disease worldwide, which increases the risk of premature death and poses a serious financial burden. Although DKD is somehow controllable with different drugs such as Angiotensin-Converting Enzyme Inhibitors (ACEI), Angiotensin Receptor Blockers (ARB) and lowering-glucose agents, modern dietary changes associated with DKD have facilitated research to assess the preventive and therapeutic merits of diet supplements from natural sources as medicine including Panax ginseng C.A.Mey. Findings from many scientific evidences have suggested that Panax ginseng C.A.Mey. can relieve the pathological status in cellular and animal models of DKD. Moreover, a few studies showed that alleviation of clinical phenotype such as reducing albuminuria, serum creatinine and renal anemia in DKD patients after application or consumption of Panax ginseng C.A.Mey.. Therefore, this review aims to discuss the effectiveness of Panax ginseng C.A.Mey. as medicine for targeting pathological phenotypes in DKD from a pharmacological perspective. This review will provide new insights into the potential understanding use of Panax ginseng C.A.Mey. in the management of DKD in clinical settings.
Collapse
Affiliation(s)
- De Jin
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuqin Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehong Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liyun Duan
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rongrong Zhou
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingyin Duan
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuting Sun
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolin Tong
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Liu Y, Yang X, Liu Y, Jiang T, Ren S, Chen J, Xiong H, Yuan M, Li W, Machens H, Chen Z. NRF2 signalling pathway: New insights and progress in the field of wound healing. J Cell Mol Med 2021; 25:5857-5868. [PMID: 34145735 PMCID: PMC8406474 DOI: 10.1111/jcmm.16597] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/10/2021] [Accepted: 04/17/2021] [Indexed: 12/22/2022] Open
Abstract
As one of the most common pathological processes in the clinic, wound healing has always been an important topic in medical research. Improving the wound healing environment, shortening the healing time and promoting fast and effective wound healing are hot and challenging issues in clinical practice. The nuclear factor-erythroid-related factor 2 (NFE2L2 or NRF2) signalling pathway reduces oxidative damage and participates in the regulation of anti-oxidative gene expression in the process of oxidative stress and thus improves the cell protection. Activation of the NRF2 signalling pathway increases the resistance of the cell to chemical carcinogens and inflammation. The signal transduction pathway regulates anti-inflammatory and antioxidant effects by regulating calcium ions, mitochondrial oxidative stress, autophagy, ferroptosis, pyroptosis and apoptosis. In this article, the role of the NRF2 signalling pathway in wound healing and its research progress in recent years are reviewed. In short, the NRF2 signalling pathway has crucial clinical significance in wound healing and is worthy of further study.
Collapse
Affiliation(s)
- Yang Liu
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaofan Yang
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yutian Liu
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Tao Jiang
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Sen Ren
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jing Chen
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hewei Xiong
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Meng Yuan
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wenqing Li
- Department of Hand and Foot SurgeryHuazhong University of Science and Technology Union ShenZhen HospitalShenzhenChina
| | - Hans‐Günther Machens
- Department of Plastic and Hand SurgeryTechnical University of MunichMunichGermany
| | - Zhenbing Chen
- Department of Hand SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
12
|
Li S, Wang P, Yang W, Zhao C, Zhang L, Zhang J, Qin Y, Xu H, Huang L. Characterization of the Components and Pharmacological Effects of Mountain-Cultivated Ginseng and Garden Ginseng Based on the Integrative Pharmacology Strategy. Front Pharmacol 2021; 12:659954. [PMID: 33981239 PMCID: PMC8108004 DOI: 10.3389/fphar.2021.659954] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/26/2021] [Indexed: 12/24/2022] Open
Abstract
Panax ginseng C. A. Mey (PGCAM) is a herbaceous perennial belonging to the Araliaceae family, mainly including Mountain-Cultivated Ginseng (MCG) and Garden Ginseng (GG) on the market. We aimed to establish a rapid, accurate and effective method to distinguish 15-year-old MCG and GG using ultra-performance liquid chromatography-quadrupole time-of-flight-tandem mass spectrometry (UPLC-QTOF-MS/MS), and also explored the pharmacological mechanisms of the main components using the Integrative Pharmacology-based Network Computational Research Platform of Traditional Chinese Medicine (TCMIP V2.0; http://www.tcmip.cn/). Altogether, 23 potential quality markers were characterized to distinguish 15-year-old MCG and GG, including ginsenosides Ra2, Rg1, and Ra1, and malonyl-ginsenoside Ra3, etc. The contents of 19 constituents (mainly protopanaxadiol-type) were higher in MCG compared with that in GG, and four constituents (mainly carbohydrate compounds) were higher in GG. The 105 putative targets corresponding to 23 potential quality markers were mainly involved in 30 pathways, which could be divided into 10 models, such as immune regulation, systems (metabolic, nervous, cardiovascular, reproductive), blood-pressure regulation, as well as antitumor, antiaging, antibacterial and anti-inflammatory effects. Furthermore, the potential quality markers of MCG and GG could inhibit the proliferation of breast cancer by regulating the mRNA expression of PSA, S6K, MDM2, and P53 genes by acting on AR, MTOR, PI3K and other targets. The Integrative Pharmacology Strategy may provide an efficient way to identify chemical constituents and explore the pharmacological actions of TCM formulations.
Collapse
Affiliation(s)
- Sen Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Wenzhi Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chunhui Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Luoqi Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingbo Zhang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuewen Qin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Liu XS, Bai XL, Wang ZX, Xu SY, Ma Y, Wang ZN. Nrf2 mediates the neuroprotective effect of isoflurane preconditioning in cortical neuron injury induced by oxygen-glucose deprivation. Hum Exp Toxicol 2021; 40:1163-1172. [PMID: 33508982 DOI: 10.1177/0960327121989416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To investigate how nuclear factor-E2-related factor 2 (Nrf2) involved in the protective effect of isoflurane (Iso) preconditioning in oxygen glucose deprivation (OGD)-induced cortical neuron injury. METHODS Primary mouse cortical neurons were divided into Control, ML385 (an Nrf2 inhibitor), Iso, Iso + ML385, OGD, ML385 + OGD, Iso + OGD, and Iso + ML385 + OGD groups. Lactate dehydrogenase activity (LDH) release and oxidative stress indexes were quantified. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect cell viability, Annexin V-FITC/propidium iodide (PI) staining to measure cell apoptosis, dichloro-dihydro-fluorescein diacetate (DCFH-DA) method to test reactive oxygen species (ROS), and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and Western blotting to evaluate genes and protein expression. RESULTS Iso preconditioning reduced LDH release and inhibited cell cytotoxicity in OGD-induced cortical neurons, which was abolished by ML385. Iso preconditioning increased the Nrf2 nuclear translocation in cortical neurons. Meanwhile, Iso decreased the OGD-induced apoptosis with the down-regulations of Bax and Caspase-3 and the up-regulation of Bcl-2, which was reversed by ML385. OGD enhanced the level of ROS and malondialdehyde (MDA) in cortical neurons, but reduced the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), which were aggravated in ML385 + OGD group and mitigated in Iso + OGD group. No observable difference was found between OGD group and Iso + ML385 + OGD group regarding apoptosis-related proteins and oxidative stress-related indexes. CONCLUSION Iso preconditioning up-regulated Nrf2 level to play its protective role in OGD-induced mouse cortical neuron injury.
Collapse
Affiliation(s)
- X-S Liu
- Department of Anesthesiology, Fushun Mining Bureau General Hospital of Liaoning Health Industry Group, Fushun, Liaoning, China
| | - X-L Bai
- Department of Anesthesiology, Fushun Mining Bureau General Hospital of Liaoning Health Industry Group, Fushun, Liaoning, China
| | - Z-X Wang
- Department of Anesthesiology, Fushun Mining Bureau General Hospital of Liaoning Health Industry Group, Fushun, Liaoning, China
| | - S-Y Xu
- Department of Anesthesiology, Fushun Mining Bureau General Hospital of Liaoning Health Industry Group, Fushun, Liaoning, China
| | - Y Ma
- Department of Anesthesiology, Fushun Mining Bureau General Hospital of Liaoning Health Industry Group, Fushun, Liaoning, China
| | - Z-N Wang
- Department of Anesthesiology, Fushun Second People's Hospital, Fushun, Liaoning, China
| |
Collapse
|
14
|
Chao S, Xu Q, Dong S, Guo M, Liu X, Cheng X. Polygala fallax Hemsl combined with compound Sanqi granules relieves glomerulonephritis by regulating proliferation and apoptosis of glomerular mesangial cells. J Int Med Res 2020; 48:300060519894124. [PMID: 32000547 PMCID: PMC7114294 DOI: 10.1177/0300060519894124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Objectives Glomerulonephritis is a serious kidney disease that can induce end-stage renal failure. The aberrant proliferation of mesangial cells is a cause of glomerulonephritis. Traditional Chinese medicines, such as Astragalus and Salvia miltrorrhiza, play important roles in the treatment of kidney-related diseases. However, the effects of a combination of Astragalus and S. miltrorrhiza-containing traditional Chinese medicines (Polygala fallax Hemsl and compound Sanqi granules) on glomerulonephritis are unclear. Methods HRM cells (human mesangial cells) were stimulated with lipopolysaccharide to simulate glomerulonephritis. Separately, compound Sanqi granules and P. fallax Hemsl were administered to nude mice in various combinations. Serum was collected from the treated mice and added to HRM cells; the proliferation and apoptosis characteristics of the cells were assessed. Results The proliferation of HRM cells was inhibited after exposure to serum from treated mice. Exposure to serum from treated mice moderately induced apoptosis of HRM cells and lowered the expression levels of TNF-α, IL-1β, and IL-6. Conclusions Combination treatment with compound Sanqi granules and P. fallax Hemsl exerts a therapeutic effect on glomerulonephritis by inhibiting the proliferation of mesangial cells, while inducing apoptosis in those cells.
Collapse
Affiliation(s)
- Shiwei Chao
- Guangdong Yifang Pharmaceutical Co. Ltd., Foshan, China
| | - Qin Xu
- Guilin Medical University, Guilin, China
| | - Shaoning Dong
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Min Guo
- Wuqing Hospital of Traditional Chinese Medicine Affiliated to Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xusheng Liu
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xueren Cheng
- Guangdong Yifang Pharmaceutical Co. Ltd., Foshan, China
| |
Collapse
|
15
|
Aerobic exercise induces tumor suppressor p16 INK4a expression of endothelial progenitor cells in human skeletal muscle. Aging (Albany NY) 2020; 12:20226-20234. [PMID: 33104519 PMCID: PMC7655215 DOI: 10.18632/aging.103763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/07/2020] [Indexed: 12/28/2022]
Abstract
Aerobic exercise induces oxidative stress and DNA damage, nevertheless, lowers cancer incidence. It remains unclear how genetic stability is maintained under this condition. Here, we examined the dynamic change of the tumor suppressor p16INK4a in cells of skeletal muscle among young men following 60-min of aerobic cycling at 70% maximal oxygen consumption (V̇O2max). Rg1 (5 mg, an immunostimulant ginsenoside) and placebo (PLA) were supplemented 1 h before exercise. Data from serial muscle biopsies shows unchanged p16INK4a+ cells after exercise followed by a considerable increase (+21-fold) in vastus lateralis muscle 3 h later. This increase was due to the accumulation of endothelial progenitor cells (p16INK4a+/CD34+) surrounding myofibers and other infiltrated nucleated cells (p16INK4a+/CD34-) in necrotic myofibers. During the Rg1 trial, acute increases of p16INK4a+ cells in the muscle occurred immediately after exercise (+3-fold) and reversed near baseline 3 h later. Rg1 also lowered IL-10 mRNA relative to PLA 3 h after exercise. Post-exercise increases in VEGF mRNA and CD163+ macrophages were similar for PLA and Rg1 trials. Conclusion: The marked increases in p16INK4a protein expression of endothelial progenitor cells in skeletal muscle implicates a protective mechanism for maintaining genetic stability against aerobic exercise. Rg1 accelerates resolution of the exercise-induced stress response.
Collapse
|
16
|
Qi R, Jiang R, Xiao H, Wang Z, He S, Wang L, Wang Y. Ginsenoside Rg1 protects against d-galactose induced fatty liver disease in a mouse model via FOXO1 transcriptional factor. Life Sci 2020; 254:117776. [PMID: 32437790 DOI: 10.1016/j.lfs.2020.117776] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
Abstract
AIMS Rg1 is the most active component of traditional Chinese medicine ginseng, having anti-aging and anti-oxidative stress features in multiple organs. Cellular senescence of hepatocytes is involved in the progression of a wide spectrum of chronic liver diseases. In this study, we investigated the potential benefits and mechanism of action of Rg1 on aging-driven chronic liver diseases. MATERIALS AND METHODS A total of 40 male C57BL/6 mice were randomly divided into four groups: control group; Rg1 group; Rg1+d-gal group; and d-gal group. Blood and liver tissue samples were collected for determination of liver function, biochemical and molecular markers, as well as histopathological investigation. KEY FINDINGS Rg1 played an anti-aging role in reversing d-galactose induced increase in senescence-associated SA-β-gal staining and p53, p21 protein in hepatocytes of mice and sustained mitochondria homeostasis. Meanwhile, Rg1 protected livers from d-galactose caused abnormal elevation of ALT and AST in serum, hepatic steatosis, reduction in hepatic glucose production, hydrogenic degeneration, inflammatory phenomena including senescence-associated secretory phenotype (SASP) IL-1β, IL-6, MCP-1 elevation and lymphocyte infiltration. Furthermore, Rg1 suppressed drastic elevation in FOXO1 phosphorylation resulting in maintaining FOXO1 protein level in the liver after d-galactose treatment, followed by FOXO1 targeted antioxidase SOD and CAT significant up-regulation concurrent with marked decrease in lipid peroxidation marker MDA. SIGNIFICANCE Rg1 exerts pharmaceutic effects of maintaining FOXO1 activity in liver, which enhances anti-oxidation potential of Rg1 to ameliorate SASP and to inhibit inflammation, also promotes metabolic homeostasis, and thus protects livers from senescence induced fatty liver disease. The study provides a potential therapeutic strategy for alleviating chronic liver pathology.
Collapse
Affiliation(s)
- Rongjia Qi
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Medical University, Chongqing 400016, China
| | - Rong Jiang
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Medical University, Chongqing 400016, China
| | - Hanxianzhi Xiao
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Medical University, Chongqing 400016, China
| | - Ziling Wang
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Medical University, Chongqing 400016, China
| | - Siyuan He
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Medical University, Chongqing 400016, China
| | - Lu Wang
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Medical University, Chongqing 400016, China.
| | - Yaping Wang
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Medical University, Chongqing 400016, China.
| |
Collapse
|
17
|
Zinc promotes functional recovery after spinal cord injury by activating Nrf2/HO-1 defense pathway and inhibiting inflammation of NLRP3 in nerve cells. Life Sci 2020; 245:117351. [PMID: 31981629 DOI: 10.1016/j.lfs.2020.117351] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
AIMS To study the specific therapeutic effect of zinc on spinal cord injury (SCI) and its specific protective mechanism. MAIN METHODS The effects of zinc ions on neuronal cells were examined in a mouse SCI model and in vitro. In vivo, neurological function was assessed by Basso Mouse Scaleat (BMS) at 1, 3, 5, 7, 10, 14, 21, and 28 days after spinal cord injury. The number of neurons and histomorphology were observed by nissl staining and hematoxylin-eosin staining (HE). The chromatin and mitochondrial structure of neurons were detected by transmission electron microscopy (TEM). The expression of nuclear factor erythroid 2 related factor 2 (Nrf2)-related antioxidant protein and NLRP3 inflammation-related protein were detected in vivo and in vitro by western blot (WB) and immunofluorescence (IF), respectively. KEY FINDINGS Zinc treatment promoted motor function recovery on days 3, 5, 7, 14, 21 and 28 after SCI. In addition, zinc reduces the mitochondrial void rate in spinal neuronal cells and promotes neuronal recovery. At the same time, zinc reduced the levels of reactive oxygen species (ROS) and malondialdehyde in spinal cord tissue after SCI, while increasing superoxide dismutase activity and glutathione peroxidase production. Zinc treatment resulted in up-regulation of Nrf2/Ho-1 levels and down-regulation of nlrp3 inflammation-associated protein expression in vitro and in vivo. SIGNIFICANCE Zinc has a protective effect on spinal cord injury by inhibiting oxidative damage and nlrp3 inflammation. Potential mechanisms may include activation of the Nrf 2/Ho-1 pathway to inhibit nlrp3 inflammation following spinal cord injury. Zinc has the potential to treat SCI.
Collapse
|
18
|
Ashrafizadeh M, Ahmadi Z, Samarghandian S, Mohammadinejad R, Yaribeygi H, Sathyapalan T, Sahebkar A. MicroRNA-mediated regulation of Nrf2 signaling pathway: Implications in disease therapy and protection against oxidative stress. Life Sci 2020; 244:117329. [PMID: 31954747 DOI: 10.1016/j.lfs.2020.117329] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/12/2020] [Accepted: 01/15/2020] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRs) are small non-coding pieces of RNA that are involved in a variety of physiologic processes such as apoptosis, cell proliferation, cell differentiation, cell cycle and cell survival. These multifunctional nucleotides are also capable of preventing oxidative damages by modulating antioxidant defense systems in a variety of milieu, such as in diabetes. Although the exact molecular mechanisms by which miRs modulate the antioxidant defense elements are unclear, some evidence suggests that they may exert these effects via nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. This intracellular mechanism is crucial in the maintenance of the physiologic redox balance by regulating the expression and activity of various cellular antioxidative defense elements and thereby plays a pivotal role in the development of oxidative stress. Any impairment in the Nrf2 signaling pathway may result in oxidative damage-dependent complications such as various diabetic complications, neurological disorders and cancer. In the current review, we discuss the modulatory effects of miRs on the Nrf2 signaling pathway, which can potentially be novel therapeutic targets.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Ashrafizadeh M, Ahmadi Z, Mohammadinejad R, Farkhondeh T, Samarghandian S. MicroRNAs mediate the anti-tumor and protective effects of ginsenosides. Nutr Cancer 2019; 72:1264-1275. [PMID: 31608663 DOI: 10.1080/01635581.2019.1675722] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRs(, as short non-coding RNAs, regulate important biological processes and mainly are associated with regulation of gene expression. The miRs are beneficial targets for diagnosis of various disorders, particularly cancer, since their expression profile undergoes alterations in pathological conditions. The numerous drugs have been designed with the capability of targeting miRs for treating pathological conditions. On the other hand, the application of naturally occurring compounds has been increased due to their minimal side effects and valuable biological and therapeutic activities. Ginsenosides are able to act as anti-tumor agents via either increasing or decreasing the expression level of miRs. Ginsenosides affect the expression profile of miRNAs to induce their protective impacts. Angiogenesis as a key factor in the progression of cancer can be suppressed by ginsenosides which is mediated by miR regulation. The aim of this review is to shed some light on the protective and anti-tumor activities of ginsenosides mediated by miRNAs.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Veterinary Medicine, Department of Basic Science, University of Tabriz, Tabriz, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Science, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|