1
|
Navidi G, Same S, Allahvirdinesbat M, Nakhostin Panahi P, Dindar Safa K. Development of novel hybrid nanomaterials with potential application in bone/dental tissue engineering: design, fabrication and characterization enriched-SAPO-34/CS/PANI scaffold. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2090-2114. [PMID: 38953859 DOI: 10.1080/09205063.2024.2366638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024]
Abstract
Fe-Ca-SAPO-34/CS/PANI, a novel hybrid bio-composite scaffold with potential application in dental tissue engineering, was prepared by freeze drying technique. The scaffold was characterized using FT-IR and SEM methods. The effects of PANI on the physicochemical properties of the Fe-Ca-SAPO-34/CS scaffold were investigated, including changes in swelling ratio, mechanical behavior, density, porosity, biodegradation, and biomineralization. Compared to the Fe-Ca-SAPO-34/CS scaffold, adding PANI decreased the pore size, porosity, swelling ratio, and biodegradation, while increasing the mechanical strength and biomineralization. Cell viability, cytotoxicity, and adhesion of human dental pulp stem cells (hDPSCs) on the scaffolds were investigated by MTT assay and SEM. The Fe-Ca-SAPO-34/CS/PANI scaffold promoted hDPSC proliferation and osteogenic differentiation compared to the Fe-Ca-SAPO-34/CS scaffold. Alizarin red staining, alkaline phosphatase activity, and qRT-PCR results revealed that Fe-Ca-SAPO-34/CS/PANI triggered osteoblast/odontoblast differentiation in hDPSCs through the up-regulation of osteogenic marker genes BGLAP, RUNX2, and SPARC. The significance of this study lies in developing a novel scaffold that synergistically combines the beneficial properties of Fe-Ca-SAPO-34, chitosan, and PANI to create an optimized microenvironment for dental tissue regeneration. These findings highlight the potential of the Fe-Ca-SAPO-34/CS/PANI scaffold as a promising biomaterial for dental tissue engineering applications, paving the way for future research and clinical translation in regenerative dentistry.
Collapse
Affiliation(s)
- Golnaz Navidi
- Brozek Lab, Chemistry and Biochemistry Department, University of OR, Eugene, Oregon
| | - Saeideh Same
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Allahvirdinesbat
- Organosilicon Research Laboratory, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Kazem Dindar Safa
- Organosilicon Research Laboratory, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
2
|
Wang D, Li Q, Xiao C, Wang H, Dong S. Nanoparticles in Periodontitis Therapy: A Review of the Current Situation. Int J Nanomedicine 2024; 19:6857-6893. [PMID: 39005956 PMCID: PMC11246087 DOI: 10.2147/ijn.s465089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Periodontitis is a disease of inflammation that affects the tissues supporting the periodontium. It is triggered by an immunological reaction of the gums to plaque, which leads to the destruction of periodontal attachment structures. Periodontitis is one of the most commonly recognized dental disorders in the world and a major factor in the loss of adult teeth. Scaling and root planing remain crucial for managing patients with persistent periodontitis. Nevertheless, exclusive reliance on mechanical interventions like periodontal surgery, extractions, and root planning is insufficient to halt the progression of periodontitis. In response to the problem of bacterial resistance, some researchers are committed to finding alternative therapies to antibiotics. In addition, some scholars focus on finding new materials to provide a powerful microenvironment for periodontal tissue regeneration and promote osteogenic repair. Nanoparticles possess distinct therapeutic qualities, including exceptional antibacterial, anti-inflammatory, and antioxidant properties, immunomodulatory capacities, and the promotion of bone regeneration ability, which made them can be used for the treatment of periodontitis. However, there are many problems that limit the clinical translation of nanoparticles, such as toxic accumulation in cells, poor correlation between in vitro and in vivo, and poor animal-to-human transmissibility. In this paper, we review the present researches on nanoparticles in periodontitis treatment from the perspective of three main categories: inorganic nanoparticles, organic nanoparticles, and nanocomposites (including nanofibers, hydrogels, and membranes). The aim of this review is to provide a comprehensive and recent update on nanoparticles-based therapies for periodontitis. The conclusion section summarizes the opportunities and challenges in the design and clinical translation of nanoparticles for the treatment of periodontitis.
Collapse
Affiliation(s)
- Di Wang
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Qiqi Li
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Hao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Shujun Dong
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| |
Collapse
|
3
|
Li Q, Wang D, Xiao C, Wang H, Dong S. Advances in Hydrogels for Periodontitis Treatment. ACS Biomater Sci Eng 2024; 10:2742-2761. [PMID: 38639082 DOI: 10.1021/acsbiomaterials.4c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Periodontitis is a common condition characterized by a bacterial infection and the disruption of the body's immune-inflammatory response, which causes damage to the teeth and supporting tissues and eventually results in tooth loss. Current therapy involves the systemic and local administration of antibiotics. However, the existing treatments cannot exert effective, sustained release and maintain an effective therapeutic concentration of the drug at the lesion site. Hydrogels are used to treat periodontitis due to their low cytotoxicity, exceptional water retention capability, and controlled drug release profile. Hydrogels can imitate the extracellular matrix of periodontal cells while offering suitable sites to load antibiotics. This article reviews the utilization of hydrogels for periodontitis therapy based on the pathogenesis and clinical manifestations of the disease. Additionally, the latest therapeutic strategies for smart hydrogels and the main techniques for hydrogel preparation have been discussed. The information will aid in designing and preparing future hydrogels for periodontitis treatment.
Collapse
Affiliation(s)
- Qiqi Li
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Di Wang
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Hao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shujun Dong
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| |
Collapse
|
4
|
Alipour M, Habibivand E, Sekhavati S, Aghazadeh Z, Ranjkesh M, Ramezani S, Aghazadeh M, Ghorbani M. Evaluation of therapeutic effects of nanofibrous mat containing mycophenolate mofetil on oral lichen planus: In vitro and clinical trial study. Biomater Investig Dent 2023; 10:2283177. [PMID: 38204471 PMCID: PMC10763882 DOI: 10.1080/26415275.2023.2283177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/09/2023] [Indexed: 01/12/2024] Open
Abstract
Objectives Recently, topical drug delivery system has gained increasing interest in the treatment of oral lesions. Lichen planus is a chronic inflammatory disease affecting mucous membranes and skin. The current study aimed to fabricate a drug delivery system containing mycophenolate mofetil for the treatment of oral lichen planus lesions. Methods Firstly, a nanofibrous mat containing mycophenolate mofetil, zinc oxide nanoparticles, and aloe vera was designed and fabricated. The antimicrobial, cytocompatibility, anti-inflammatory, and antioxidative characteristics of fabricated scaffolds were evaluated. Then, this nanofibrous mat was applied to 12 patients suffering from bilateral erythematous/erosive Oral Lichen planus (OLP) lesions for 2 weeks. The treatment outcomes, including oral symptoms and lesion size, were compared with the routine topical treatment of these lesions; Triamcinolone ointment. Results The characterization of nanofibrous mat approved the successful fabrication of scaffolds. The fabricated nanofibers showed notable antimicrobial activity. The amounts of TNF 𝛼, IL6, and reactive oxygen species (ROS) of stimulated human gingival fibroblasts were decreased after exposure to NFs/Myco/Alv/ZnO scaffolds. The clinical trial results demonstrated the same therapeutic effects compared to the commercial ointment, while the symptoms of patients were significantly improved in the mats group.Significance. Considering the successful results of this study, the application of nanofibrous mat can be a promising product for improving treatment outcomes of OLP.
Collapse
Affiliation(s)
- Mahdieh Alipour
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Habibivand
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shayesteh Sekhavati
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Aghazadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Ranjkesh
- Department of Dermatology, School of Medicine, Sina Medical Research & Training Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soghra Ramezani
- Nanofiber Research Center, Asian Nanostructures Technology Co. (ANSTCO), Zanjan, Iran
| | - Marziyeh Aghazadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Bioscience Research, Department of Medicine – Cardiology, Department of Microbiology, Immunology & Biochemistry, University of Tennessee, Tennessee, USA
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Bar JK, Lis-Nawara A, Kowalczyk T, Grelewski PG, Stamnitz S, Gerber H, Klimczak A. Osteogenic Potential of Human Dental Pulp Stem Cells (hDPSCs) Growing on Poly L-Lactide-Co-Caprolactone and Hyaluronic Acid (HYAFF-11 TM) Scaffolds. Int J Mol Sci 2023; 24:16747. [PMID: 38069071 PMCID: PMC10705868 DOI: 10.3390/ijms242316747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/12/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Bone tissue engineering using different scaffolds is a new therapeutic approach in regenerative medicine. This study explored the osteogenic potential of human dental pulp stem cells (hDPSCs) grown on a hydrolytically modified poly(L-lactide-co-caprolactone) (PLCL) electrospun scaffold and a non-woven hyaluronic acid (HYAFF-11™) mesh. The adhesion, immunophenotype, and osteogenic differentiation of hDPSCs seeded on PLCL and HYAFF-11™ scaffolds were analyzed. The results showed that PLCL and HYAFF-11™ scaffolds significantly supported hDPSCs adhesion; however, hDPSCs' adhesion rate was significantly higher on PLCL than on HYAFF-11™. SEM analysis confirmed good adhesion of hDPSCs on both scaffolds before and after osteogenesis. Alizarin red S staining showed mineral deposits on both scaffolds after hDPSCs osteogenesis. The mRNA levels of runt-related transcription factor 2 (Runx2), collagen type I (Coll-I), osterix (Osx), osteocalcin (Ocn), osteopontin (Opn), bone sialoprotein (Bsp), and dentin sialophosphoprotein (Dspp) gene expression and their proteins were higher in hDPSCs after osteogenic differentiation on both scaffolds compared to undifferentiated hDPSCs on PLCL and HYAFF-11™. These results showed that PLCL scaffolds provide a better environment that supports hDPSCs attachment and osteogenic differentiation than HYAFF-11™. The high mRNA of early osteogenic gene expression and mineral deposits observed after hDPSCs osteogenesis on a PLCL mat indicated its better impact on hDPSCs' osteogenic potential than that of HYAFF-11™, and hDPSC/PLCL constructs might be considered in the future as an innovative approach to bone defect repair.
Collapse
Affiliation(s)
- Julia K. Bar
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (A.L.-N.); (P.G.G.)
| | - Anna Lis-Nawara
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (A.L.-N.); (P.G.G.)
| | - Tomasz Kowalczyk
- Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research (IPPT PAN), Polish Academy of Sciences, Adolfa Pawińskiego 5B St., 02-106 Warsaw, Poland;
| | - Piotr G. Grelewski
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (A.L.-N.); (P.G.G.)
| | - Sandra Stamnitz
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland;
| | - Hanna Gerber
- Department of Maxillofacial Surgery, Wroclaw Medical University, Borowska 213, 50-556Wroclaw, Poland;
| | - Aleksandra Klimczak
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland;
| |
Collapse
|
6
|
Li LJ, Chu CH, Yu OY. Application of Zeolites and Zeolitic Imidazolate Frameworks in Dentistry-A Narrative Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2973. [PMID: 37999327 PMCID: PMC10675649 DOI: 10.3390/nano13222973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Zeolites and zeolitic imidazolate frameworks (ZIFs) are crystalline aluminosilicates with porous structure, which are closely linked with nanomaterials. They are characterized by enhanced ion exchange capacity, physical-chemical stability, thermal stability and biocompatibility, making them a promising material for dental applications. This review aimed to provide an overview of the application of zeolites and ZIFs in dentistry. The common zeolite compounds for dental application include silver zeolite, zinc zeolite, calcium zeolite and strontium zeolite. The common ZIFs for dental application include ZIF-8 and ZIF-67. Zeolites and ZIFs have been employed in various areas of dentistry, such as restorative dentistry, endodontics, prosthodontics, implantology, periodontics, orthodontics and oral surgery. In restorative dentistry, zeolites and ZIFs are used as antimicrobial additives in dental adhesives and restorative materials. In endodontics, zeolites are used in root-end fillings, root canal irritants, root canal sealers and bone matrix scaffolds for peri-apical diseases. In prosthodontics, zeolites can be incorporated into denture bases, tissue conditioners, soft denture liners and dental prostheses. In implantology, zeolites and ZIFs are applied in dental implants, bone graft materials, bone adhesive hydrogels, drug delivery systems and electrospinning. In periodontics, zeolites can be applied as antibacterial agents for deep periodontal pockets, while ZIFs can be embedded in guided tissue regeneration membranes and guided bone regeneration membranes. In orthodontics, zeolites can be applied in orthodontic appliances. Additionally, for oral surgery, zeolites can be used in oral cancer diagnostic marker membranes, maxillofacial prosthesis silicone elastomer and tooth extraction medicines, while ZIFs can be incorporated to osteogenic glue or used as a carrier for antitumour drugs. In summary, zeolites have a broad application in dentistry and are receiving more attention from clinicians and researchers.
Collapse
Affiliation(s)
| | | | - Ollie Yiru Yu
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong SAR 999077, China; (L.J.L.); (C.-H.C.)
| |
Collapse
|
7
|
Li X, Wang Y, Huang D, Jiang Z, He Z, Luo M, Lei J, Xiao Y. Nanomaterials Modulating the Fate of Dental-Derived Mesenchymal Stem Cells Involved in Oral Tissue Reconstruction: A Systematic Review. Int J Nanomedicine 2023; 18:5377-5406. [PMID: 37753067 PMCID: PMC10519211 DOI: 10.2147/ijn.s418675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/03/2023] [Indexed: 09/28/2023] Open
Abstract
The critical challenges in repairing oral soft and hard tissue defects are infection control and the recovery of functions. Compared to conventional tissue regeneration methods, nano-bioactive materials have become the optimal materials with excellent physicochemical properties and biocompatibility. Dental-derived mesenchymal stem cells (DMSCs) are a particular type of mesenchymal stromal cells (MSCs) with great potential in tissue regeneration and differentiation. This paper presents a review of the application of various nano-bioactive materials for the induction of differentiation of DMSCs in oral and maxillofacial restorations in recent years, outlining the characteristics of DMSCs, detailing the biological regulatory effects of various nano-materials on stem cells and summarizing the material-induced differentiation of DMSCs into multiple types of tissue-induced regeneration strategies. Nanomaterials are different and complementary to each other. These studies are helpful for the development of new nanoscientific research technology and the clinical transformation of tissue reconstruction technology and provide a theoretical basis for the application of nanomaterial-modified dental implants. We extensively searched for papers related to tissue engineering bioactive constructs based on MSCs and nanomaterials in the databases of PubMed, Medline, and Google Scholar, using keywords such as "mesenchymal stem cells", "nanotechnology", "biomaterials", "dentistry" and "tissue regeneration". From 2013 to 2023, we selected approximately 150 articles that align with our philosophy.
Collapse
Affiliation(s)
- Xingrui Li
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, the Affiliated Stomatological Hospital of Southwest Medical University, Institute of Stomatology, Southwest Medical University, Luzhou, People’s Republic of China
| | - Yue Wang
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, the Affiliated Stomatological Hospital of Southwest Medical University, Institute of Stomatology, Southwest Medical University, Luzhou, People’s Republic of China
| | - Denghao Huang
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, the Affiliated Stomatological Hospital of Southwest Medical University, Institute of Stomatology, Southwest Medical University, Luzhou, People’s Republic of China
| | - Zhonghao Jiang
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, the Affiliated Stomatological Hospital of Southwest Medical University, Institute of Stomatology, Southwest Medical University, Luzhou, People’s Republic of China
| | - Zhiyu He
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, the Affiliated Stomatological Hospital of Southwest Medical University, Institute of Stomatology, Southwest Medical University, Luzhou, People’s Republic of China
| | - Maoxuan Luo
- Department of Orthodontics, the Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Jie Lei
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, the Affiliated Stomatological Hospital of Southwest Medical University, Institute of Stomatology, Southwest Medical University, Luzhou, People’s Republic of China
- Department of Orthodontics, the Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Yao Xiao
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, the Affiliated Stomatological Hospital of Southwest Medical University, Institute of Stomatology, Southwest Medical University, Luzhou, People’s Republic of China
- Department of Orthodontics, the Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Department of Chengbei Outpatient, the Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| |
Collapse
|
8
|
Souza IMS, García-Villén F, Viseras C, Perger SBC. Zeolites as Ingredients of Medicinal Products. Pharmaceutics 2023; 15:pharmaceutics15051352. [PMID: 37242594 DOI: 10.3390/pharmaceutics15051352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Development of new medicinal products for particular therapeutic treatment or for better manipulations with better quality and less side effects are possible as a result of advanced inorganic and organic materials application, among which zeolites, due to their properties and versatility, have been gaining attention. This paper is an overview of the development in the use of zeolite materials and their composites and modifications as medicinal products for several purposes such as active agents, carriers, for topical treatments, oral formulations, anticancer, the composition of theragnostic systems, vaccines, parenteral dosage forms, tissue engineering, etc. The objective of this review is to explore the main properties of zeolites and associate them with their drug interaction, mainly addressing the advances and studies related to the use of zeolites for different types of treatments due to their zeolite characteristics such as molecule storage capacity, physical and chemical stability, cation exchange capacity, and possibility of functionalization. The use of computational tools to predict the drug-zeolite interaction is also explored. As conclusion was possible to realize the possibilities and versatility of zeolite applications as being able to act in several aspects of medicinal products.
Collapse
Affiliation(s)
- Iane M S Souza
- Laboratório de Peneiras Moleculares, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Brazil
| | - Fátima García-Villén
- NanoBioCel Group, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus Cartuja s/n, 18071 Granada, Spain
- Andalusian Institute of Earth Sciences, CSIC-University of Granada, Armilla, 18100 Granada, Spain
| | - Sibele B C Perger
- Laboratório de Peneiras Moleculares, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Brazil
| |
Collapse
|
9
|
Hadizadeh F, Khodaverdi E, Oroojalian F, Rahmanian-Devin P, Hassan M Hashemi S, Omidkhah N, Asare-Addo K, Nokhodchi A, Kamali H. Preparation of porous PCL-PEG-PCL scaffolds using supercritical carbon dioxide. Int J Pharm 2023; 631:122507. [PMID: 36535457 DOI: 10.1016/j.ijpharm.2022.122507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
In this study, the Supercritical Carbon Dioxide (scCO2) gas foaming procedure was used in the preparation of scaffolds containing the model drug dexamethasone (DXMT). The method used did not include an organic solvent thus making it a safe method. The ring-opening polymerization of PCL-PEG-PCL (PCEC) triblock was conducted using an organocatalyst [1,8 diazabicyclo [5.4.0] undec-7-ene (DBU)]. After mixing 5.0 g of DXMT with 50.0 g of PCEC, hydraulic pressure was applied to compress the mixed powder into disc-like tablets. The tablet-like scaffold of the triblock containing DXMT was inserted into a scCO2 gas-foaming device. The peak porosity percentage of the synthesized triblock was found to be 55.58 %. Pressure, temperature, soaking time and the time required to depressurize were recorded as 198 bar, 50 °C, 2.0 h, and 28 min respectively. After treatment with scCO2, the scaffolds experienced an almost full release of DXMT in vitro after 30 days (83.74 ± 1.54 % vs 52.24 ± 2.03 % before scCO2 treatment). In conclusion, the results proved that the scCO2 gas foaming procedure could be employed for constructing modifiable PCEC scaffolds with plausible porosity and structural and morphological features which can manipulate drug release.
Collapse
Affiliation(s)
- Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Khodaverdi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Pouria Rahmanian-Devin
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - S Hassan M Hashemi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Omidkhah
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield, UK
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, BN1 9QJ Brighton, UK; Lupin Research Inc., Lupin Pharmaceuticals, 4006 NW 124th Ave., Coral Spring, FL 33065, USA.
| | - Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
A novel injectable hydrogel containing polyetheretherketone for bone regeneration in the craniofacial region. Sci Rep 2023; 13:864. [PMID: 36650203 PMCID: PMC9845302 DOI: 10.1038/s41598-022-23708-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 11/03/2022] [Indexed: 01/19/2023] Open
Abstract
Polyetheretherketone (PEEK) is an organic material introduced as an alternative for titanium implants. Injectable hydrogels are the most promising approach for bone regeneration in the oral cavity to fill the defects with irregular shapes and contours conservatively. In the current study, injectable Aldehyde-cellulose nanocrystalline/silk fibroin (ADCNCs/SF) hydrogels containing PEEK were synthesized, and their bone regeneration capacity was evaluated. Structure, intermolecular interaction, and the reaction between the components were assessed in hydrogel structure. The cytocompatibility of the fabricated scaffolds was evaluated on human dental pulp stem cells (hDPSCs). Moreover, the osteoinduction capacity of ADCNCs/SF/PEEK hydrogels on hDPSCs was evaluated using Real-time PCR, Western blot, Alizarin red staining and ALP activity. Bone formation in critical-size defects in rats' cranial was assessed histologically and radiographically. The results confirmed the successful fabrication of the hydrogel and its osteogenic induction ability on hDPSCs. Furthermore, in in vivo phase, bone formation was significantly higher in ADCNCs/SF/PEEK group. Hence, the enhanced bone regeneration in response to PEEK-loaded hydrogels suggested its potential for regenerating bone loss in the craniofacial region, explicitly surrounding the dental implants.
Collapse
|
11
|
Li Y, Cai Y, Chen T, Bao X. Zeolites: A series of promising biomaterials in bone tissue engineering. Front Bioeng Biotechnol 2022; 10:1066552. [PMID: 36466336 PMCID: PMC9712446 DOI: 10.3389/fbioe.2022.1066552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/03/2022] [Indexed: 06/30/2024] Open
Abstract
As an important worldwide medical issue, bone defect exhibits a variety of physical and psychological consequences on sufferers. Some features of clinical treatments including bone grafting and limb shortening are not satisfactory. Recently, bone tissue engineering has been considered as the most effective approach to dealing with the issue of bone deformities. Meanwhile, a variety of biomaterials have been rationally designed and created for the bone regeneration and tissue repairing. Among all these admirable biomaterials for bone remodeling, zeolite-based materials can serve as efficient scaffold candidates with excellent osteo-inductivity. In addition, the porous nature and high biocompatibility of zeolites endow them with the ability as ideal substrates for cell adhesion and proliferation. More importantly, zeolites are investigated as potential coating materials for implants because they have been proven to increase osteo-conductivity and aid in local elastic modeling. Last but not least, zeolites can also be used to treat bone disorders and act as dietary supplements during the practical applications. Accordingly, numerous benefits of zeolite prompt us to summarize their recent biomedical progress including but not limited to the distinguishing characteristics, broad classifications, as well as promising usages in bone tissue engineering.
Collapse
Affiliation(s)
| | | | | | - Xingfu Bao
- Department of Orthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
12
|
Sheela S, AlGhalban FM, Khalil KA, Laoui T, Gopinath VK. Synthesis and Biocompatibility Evaluation of PCL Electrospun Membranes Coated with MTA/HA for Potential Application in Dental Pulp Capping. Polymers (Basel) 2022; 14:polym14224862. [PMID: 36432990 PMCID: PMC9695879 DOI: 10.3390/polym14224862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to develop polycaprolactone (PCL) electrospun membranes coated with mineral trioxide aggregate/hydroxyapatite (MTA/HA) as a potential material for dental pulp capping. Initially, the PCL membrane was prepared by an electrospinning process, which was further surface coated with MTA (labeled as PCLMTA) and HA (labeled as PCLHA). The physico-chemical characterization of the fabricated membranes was carried out using field emission scanning electron microscopy (FE-SEM)/Energy dispersive X-ray (EDX), X-ray diffraction (XRD), Raman spectroscopy, and contact angle analysis. The biocompatibility of the human dental pulp stem cells (hDPSCs) on the fabricated membranes was checked by XTT assay, and the hDPSCs adhesion and spreading were assessed by FE-SEM and confocal microscopy. The wound healing ability of hDPSCs in response to different electrospun membrane extracts was examined by scratch assay. The surface morphology analysis of the membranes by FE-SEM demonstrated a uniform nanofibrous texture with an average fiber diameter of 594 ± 124 nm for PCL, 517 ± 159 nm for PCLHA, and 490 ± 162 nm for PCLMTA. The elemental analysis of the PCLHA membrane indicated the presence of calcium and phosphorous elements related to HA, whereas the PCLMTA membrane showed the presence of calcium and silicate, related to MTA. The presence of MTA and HA in the PCL membranes was also confirmed by Raman spectroscopy. The water contact analysis demonstrated the hydrophobic nature of the membranes. The results indicated that PCL, PCLHA, and PCLMTA membranes were biocompatible, while PCLMTA exhibited better cell adhesion, spreading, and migration.
Collapse
Affiliation(s)
- Soumya Sheela
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Fatma Mousa AlGhalban
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Khalil Abdelrazek Khalil
- Department of Mechanical & Nuclear Engineering, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Tahar Laoui
- Department of Mechanical & Nuclear Engineering, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Vellore Kannan Gopinath
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: or
| |
Collapse
|
13
|
Abedi F, Moghaddam SV, Ghandforoushan P, Aghazadeh M, Ebadi H, Davaran S. Synthesis and characterization of growth factor free nanoengineered bioactive scaffolds for bone tissue engineering. J Biol Eng 2022; 16:28. [PMID: 36253790 PMCID: PMC9578226 DOI: 10.1186/s13036-022-00303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To address the obstacles that come with orthopedic surgery for biological graft tissues, including immune rejections, bacterial infections, and weak osseointegration, bioactive nanocomposites have been used as an alternative for bone grafting since they can mimic the biological and mechanical properties of the native bone. Among them, PCL-PEG-PCL (PCEC) copolymer has gained much attention for bone tissue engineering as a result of its biocompatibility and ability for osteogenesis. METHODS Here, we designed a growth factor-free nanoengineered scaffold based on the incorporation of Fe3O4 and hydroxyapatite (HA) nanoparticles into the PCL-PEG-PCL/Gelatin (PCEC/Gel) nanocomposite. We characterized different formulations of nanocomposite scaffolds in terms of physicochemical properties. Also, the mechanical property and specific surface area of the prepared scaffolds, as well as their feasibility for human dental pulp stem cells (hDPSCs) adhesion were assessed. RESULTS The results of in vitro cell culture study revealed that the PCEC/Gel Fe3O4&HA scaffold could promote osteogenesis in comparison with the bare scaffold, which confirmed the positive effect of the Fe3O4 and HA nanoparticles in the osteogenic differentiation of hDPSCs. CONCLUSION The incorporation of Fe3O4 and HA with PCEC/gelatin could enhance osteogenic differentiation of hDPSCs for possible substitution of bone grafting tissue.
Collapse
Affiliation(s)
- Fatemeh Abedi
- Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran. .,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sevil Vaghefi Moghaddam
- Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Ghandforoushan
- Department of Medicinal chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Marziyeh Aghazadeh
- Stem Cell Research Center and Oral Medicine Department of Dental Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hafez Ebadi
- Department of Materials Engineering, Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran
| | - Soodabeh Davaran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Medicinal chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
14
|
A Molecular View on Biomaterials and Dental Stem Cells Interactions: Literature Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biomaterials and stem cells are essential components in the field of regenerative medicine. Various biomaterials have been designed that have appropriate biochemical and biophysical characteristics to mimic the microenvironment of an extracellular matrix. Dental stem cells (DT-MSCs) represent a novel source for the development of autologous therapies due to their easy availability. Although research on biomaterials and DT-MSCs has progressed, there are still challenges in the characteristics of biomaterials and the molecular mechanisms involved in regulating the behavior of DT-MSCs. In this review, the characteristics of biomaterials are summarized, and their classification according to their source, bioactivity, and different biological effects on the expansion and differentiation of DT-MSCs is summarized. Finally, advances in research on the interaction of biomaterials and the molecular components involved (mechanosensors and mechanotransduction) in DT-MSCs during their proliferation and differentiation are analyzed. Understanding the molecular dynamics of DT-MSCs and biomaterials can contribute to research in regenerative medicine and the development of autologous stem cell therapies.
Collapse
|
15
|
Characterization of Biological Properties of Dental Pulp Stem Cells Grown on an Electrospun Poly(l-lactide- co-caprolactone) Scaffold. MATERIALS 2022; 15:ma15051900. [PMID: 35269131 PMCID: PMC8911644 DOI: 10.3390/ma15051900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/15/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023]
Abstract
Poly(l-lactide-co-caprolactone) (PLCL) electrospun scaffolds with seeded stem cells have drawn great interest in tissue engineering. This study investigated the biological behavior of human dental pulp stem cells (hDPSCs) grown on a hydrolytically-modified PLCL nanofiber scaffold. The hDPSCs were seeded on PLCL, and their biological features such as viability, proliferation, adhesion, population doubling time, the immunophenotype of hDPSCs and osteogenic differentiation capacity were evaluated on scaffolds. The results showed that the PLCL scaffold significantly supported hDPSC viability/proliferation. The hDPSCs adhesion rate and spreading onto PLCL increased with time of culture. hDPSCs were able to migrate inside the PLCL electrospun scaffold after 7 days of seeding. No differences in morphology and immunophenotype of hDPSCs grown on PLCL and in flasks were observed. The mRNA levels of bone-related genes and their proteins were significantly higher in hDPSCs after osteogenic differentiation on PLCL compared with undifferentiated hDPSCs on PLCL. These results showed that the mechanical properties of a modified PLCL mat provide an appropriate environment that supports hDPSCs attachment, proliferation, migration and their osteogenic differentiation on the PLCL scaffold. The good PLCL biocompatibility with dental pulp stem cells indicates that this mat may be applied in designing a bioactive hDPSCs/PLCL construct for bone tissue engineering.
Collapse
|
16
|
|
17
|
Early Osteogenic Differentiation Stimulation of Dental Pulp Stem Cells by Calcitriol and Curcumin. Stem Cells Int 2021; 2021:9980137. [PMID: 34122559 PMCID: PMC8166473 DOI: 10.1155/2021/9980137] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/25/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022] Open
Abstract
Curcumin, as a natural phenolic substance, is extracted from the rhizome of Curcuma longa (turmeric), which is effective in bone healthfulness. Calcitriol is an effective hormone in regulating bone remodeling and mineral homeostasis and immune response. Mesenchymal stem cells (MSCs) are found in most dental tissues and resemble bone marrow-derived MSCs. In this work, we investigated the effect of combination and individual treatment of curcumin and calcitriol on early osteogenic differentiation of dental pulp stem cells (DPSCs). Early osteogenic differentiation was evaluated and confirmed by the gene expression level of ALP and its activity. Curcumin individually and in combination with calcitriol increased ALP activity and osteoblast-specific mRNA expression of ALP when DPSCs were cultured in an osteogenic medium. Calcitriol alone increased the enzyme more than in combination with curcumin. These findings demonstrate that curcumin can induce early osteogenic differentiation of DPSCs like calcitriol as a potent stimulant of osteogenesis.
Collapse
|
18
|
Gholami Z, Hasanpour S, Sadigh S, Johari S, Shahveghar Z, Ataei K, Javari E, Amani M, Javadi Kia L, Delir Akbari Z, Nazari Z, Maleki Dizaj S, Rezaei Y. Antibacterial agent-releasing scaffolds in dental tissue engineering. JOURNAL OF ADVANCED PERIODONTOLOGY & IMPLANT DENTISTRY 2021; 13:43-47. [PMID: 35919917 PMCID: PMC9327489 DOI: 10.34172/japid.2021.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/27/2021] [Indexed: 11/22/2022]
Abstract
It seems quite challenging in tissue engineering to synthesize a base material with a range of essential activities, including biocompatibility, nontoxicity, and antimicrobial activities. Various types of materials are synthesized to solve the problem. This study aimed to provide the latest relevant information for practitioners about antibacterial scaffolds in dental tissue engineering. The PubMed search engine was used to review the relevant studies with a combination of the following terms as search queries: tissue engineering, scaffolds, antimicrobial, dentistry, dental stem cells, and oral diseases. It is noteworthy to state that only the terms related to tissue engineering in dentistry were considered. The antimicrobial scaffolds support the local tissue regeneration and prevent adverse inflammatory reactions; however, not all scaffolds have such positive characteristics. To resolve this potential defect, different antimicrobial agents are used during the synthesis process. Innovative methods in guided tissue engineering are actively working towards new ways to control oral and periodontal diseases.
Collapse
Affiliation(s)
- Zahra Gholami
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Hasanpour
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Sadigh
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sana Johari
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Shahveghar
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kosar Ataei
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Eelahe Javari
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Amani
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Javadi Kia
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Delir Akbari
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Nazari
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yashar Rezaei
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Yamakawa D, Kawase-Koga Y, Fujii Y, Kanno Y, Sato M, Ohba S, Kitaura Y, Kashiwagi M, Chikazu D. Effects of Helioxanthin Derivative-Treated Human Dental Pulp Stem Cells on Fracture Healing. Int J Mol Sci 2020; 21:E9158. [PMID: 33271795 PMCID: PMC7730800 DOI: 10.3390/ijms21239158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 01/05/2023] Open
Abstract
Bone defects affect patients functionally and psychologically and can decrease quality of life. To resolve these problems, a simple and efficient method of bone regeneration is required. Human dental pulp stem cells (DPSCs) have high proliferative ability and multilineage differentiation potential. In our previous study, we reported a highly efficient method to induce osteogenic differentiation using DPSC sheets treated with a helioxanthin derivative (4-(4-methoxyphenyl)pyrido[40,30:4,5]thieno[2,3-b]pyridine-2-carboxamide (TH)) in a mouse calvarial defect model. However, the localization of the DPSCs after transplantation remains unknown. Therefore, in this study, we investigated the localization of transplanted DPSCs in a mouse fracture model. DPSCs were collected from six healthy patients aged 18-29 years, cultured in normal medium (NM), osteogenic medium (OM), or OM with TH, and fabricated them into cell sheets. To evaluate the efficacy of fracture healing using DPSCs treated with OM+TH, and to clarify the localization of the transplanted DPSC sheets in vivo, we transplanted OM+TH-treated DPSC sheets labeled with PKH26 into mouse tibiae fractures. We demonstrated that transplanted OM+TH-treated DPSCs sheets were localized to the fracture site and facilitated bone formation. These results indicated that transplanted OM+TH-treated DPSCs were localized at fracture sites and directly promoted fracture healing.
Collapse
Affiliation(s)
- Daiki Yamakawa
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (D.Y.); (Y.F.); (Y.K.); (M.S.); (D.C.)
| | - Yoko Kawase-Koga
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (D.Y.); (Y.F.); (Y.K.); (M.S.); (D.C.)
- Department of Oral and Maxillofacial Surgery, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Yasuyuki Fujii
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (D.Y.); (Y.F.); (Y.K.); (M.S.); (D.C.)
| | - Yuki Kanno
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (D.Y.); (Y.F.); (Y.K.); (M.S.); (D.C.)
- Department of Oral and Maxillofacial Surgery, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Marika Sato
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (D.Y.); (Y.F.); (Y.K.); (M.S.); (D.C.)
| | - Shinsuke Ohba
- Department of Cell Biology, Institute of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan;
| | - Yoshiaki Kitaura
- Department of Bioengineering, School of Engneering, The University of Tokyo, 7-3-1 Hongou, Bunkyo-ku, Tokyo 113-0033, Japan;
| | - Miki Kashiwagi
- Department of Oral-Maxillofacial Surgery and Orthodontics, University of Tokyo Hospital, 7-3-1 Hongou, Bunkyo-ku, Tokyo 113-0033, Japan;
| | - Daichi Chikazu
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (D.Y.); (Y.F.); (Y.K.); (M.S.); (D.C.)
| |
Collapse
|
20
|
Serati-Nouri H, Jafari A, Roshangar L, Dadashpour M, Pilehvar-Soltanahmadi Y, Zarghami N. Biomedical applications of zeolite-based materials: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111225. [DOI: 10.1016/j.msec.2020.111225] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022]
|
21
|
Samiei M, Aghazadeh Z, Abdolahinia ED, Vahdati A, Daneshvar S, Noghani A. The effect of electromagnetic fields on survival and proliferation rate of dental pulp stem cells. Acta Odontol Scand 2020; 78:494-500. [PMID: 32191156 DOI: 10.1080/00016357.2020.1734655] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aims: Extremely low-frequency electromagnetic fields (ELF-EMF) can affect biological systems and alter some cell functions like proliferation rate. Dental pulp tissue is known as a source of multipotent stromal stem cells (MSCs), which can be obtained by a less invasive and more available process compared to bone marrow-derived stem cells (BMSCs). This study aimed to consider the effect of ELF-EMF on proliferation rates of human dental pulp stem cells (hDPSCs).Material and methods: ELF-EMF was generated by a system including autotransformer, multi-meter, solenoid coils, teslameter and its probe. The effect of ELF-EMF with the intensity of 0.5 and 1 mT and 50 Hz on the proliferation rate of hDPSCs was assessed in 20 and 40 min per day for 7 days. MTT assay and DAPI test were used to determine the growth and proliferation of DPSCs.Results: Based on MTT, ELF-EMF has maximum effect with the intensity of 1 mT for 20 min/day on the proliferation of hDPSCs. The survival and proliferation rate in all exposure groups were significantly higher than the control group. Based on the data obtained from MTT and DAPI assay, the number of viable cells in the group exposed to 1 mT for 20 min/day was higher than other groups (p < .05).Conclusions: Regarding to the results of this study, 0.5 and 1 mT ELF-EMF can enhance survival and proliferation rates of hDPSCs.
Collapse
Affiliation(s)
- Mohammad Samiei
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Aghazadeh
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Vahdati
- Dental Public Health Program, Community Oral Health Department, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran
| | - Sabalan Daneshvar
- Department of Electrical and Computer Engineering, Faculty of Electrical Engineering, University of Tabriz, Tabriz, Iran
| | - Atefe Noghani
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Sousa MGC, Maximiano MR, Costa RA, Rezende TMB, Franco OL. Nanofibers as drug-delivery systems for infection control in dentistry. Expert Opin Drug Deliv 2020; 17:919-930. [PMID: 32401065 DOI: 10.1080/17425247.2020.1762564] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Due to the complexity of different oral infections, new anti-infective nanotechnological approaches have been emerging for dentistry in recent years. These strategies may contribute to antimicrobial molecules delivery, tissue regeneration, and oral health maintenance by acting in a more specific site and not being cytotoxic. In this context, nanofibers appear as versatile structures and might act both in the release of antimicrobial molecules and as a scaffold for new tissue formation. AREAS COVERED This review addresses the application of different nanofibers as new strategies for the delivery of antimicrobial molecules for dentistry. Here, we present the main polymers used to construct nanofibers, methods of production and mainly their antimicrobial activity against microorganisms commonly responsible for the usual dental infections. These biomaterials may be associated to restorative materials, prostheses, and mucoadhesive structures. Besides, nanofibers can be used for endodontic or periodontal therapy, or even on implant surfaces. EXPERT OPINION A wide variety of studies report the potential application of anti-infective nanofibers in the oral cavity. Although there are still several barriers between in vitro and in vivo studies, these new formulations appear as promising new therapies for dentistry.
Collapse
Affiliation(s)
- Maurício G C Sousa
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Mariana R Maximiano
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Rosiane A Costa
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Taia M B Rezende
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil.,Programa de Pós-Graduação em Ciências da Saúde, Universidade de Brasília , Brasília, Brazil.,Curso de Odontologia, Universidade Católica de Brasília , Brasília, Brazil
| | - Octávio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília , Brasília, Brazil.,Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília , Brasília, Brazil.,S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica dom Bosco , Mato Grosso do Sul, Brazil
| |
Collapse
|