1
|
Okba EA, Rabea MF, El-Sheikh MY, Aboelfetoh EF. Design of silver-zinc-nickel spinel-ferrite mesoporous silica as a powerful and simply separable adsorbent for some textile dye removal. Sci Rep 2024; 14:16481. [PMID: 39013936 PMCID: PMC11252999 DOI: 10.1038/s41598-024-66457-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/01/2024] [Indexed: 07/18/2024] Open
Abstract
Silver-zinc-nickel spinel ferrite was prepared by the co-precipitation procedure with the precise composition Ag0.1Zn0.4Ni0.5Fe2O4 for bolstering pollutant removal effectiveness while upholding magnetic properties and then coated with a mesoporous silica layer. The surface characteristics and composition of Ag0.1Zn0.4Ni0.5Fe2O4@mSiO2 were confirmed using EDX, FT-IR, VSM, XRD, TEM, SEM, and BET methods. The surface modification of Ag-Zn-Ni ferrite with a silica layer improves the texture properties, where the specific surface area and average pore size of the spinel ferrite rose to 180 m2/g and 3.15 nm, respectively. The prepared spinel ferrite@mSiO2 has been utilized as an efficient adsorbent for eliminating methyl green (MG) and indigo carmine (IC) as models of cationic and anionic dyes from wastewater, respectively. Studying pH, Pzc, adsorbent dosage, dye concentration, and temperature showed that efficient removal of MG was carried out in alkaline media (pH = 12), while the acid medium (pH = 2) was effective for IC removal. Langmuir isotherm and pseudo-second-order kinetics were found to be good fits for the adsorption data. Both dyes were adsorbed in a spontaneous, endothermic process. A possible mechanism for dye removal has been proposed. The adsorbent was effectively recovered and reused.
Collapse
Affiliation(s)
- Ehab A Okba
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Moamen F Rabea
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohamed Y El-Sheikh
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Eman F Aboelfetoh
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
2
|
Alijani HQ, Khatami M, Torkzadeh-Mahani M, Michalička J, Wang W, Wang D, Heydari A. Biosynthesis of ternary NiCoFe 2O 4 nanoflowers: investigating their 3D structure and potential use in gene delivery. J Biol Eng 2023; 17:61. [PMID: 37784189 PMCID: PMC10546742 DOI: 10.1186/s13036-023-00381-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023] Open
Abstract
Multicomponent nanoparticle systems are known for their varied properties and functions, and have shown potential as gene nanocarriers. This study aims to synthesize and characterize ternary nickel-cobalt-ferrite (NiCoFe2O4) nanoparticles with the potential to serve as gene nanocarriers for cancer/gene therapy. The biogenic nanocarriers were prepared using a simple and eco-friendly method following green chemistry principles. The physicochemical properties of the nanoparticles were analyzed by X-ray diffraction, vibrating sample magnetometer, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller. To evaluate the morphology of the nanoparticles, the field emission scanning electron microscopy with energy dispersive X-Ray spectroscopy, high-resolution transmission electron microscopy imaging, and electron tomography were conducted. Results indicate the nanoparticles have a nanoflower morphology with a mesoporous nature and a cubic spinel structure, where the rod and spherical nanoparticles became rose-like with a specific orientation. These nanoparticles were found to have minimal toxicity in human embryonic kidney 293 (HEK-293 T) cells at concentrations of 1 to 250 µg·mL-1. We also demonstrated that the nanoparticles could be used as gene nanocarriers for delivering genes to HEK-293 T cells using an external magnetic field, with optimal transfection efficiency achieved at an N/P ratio of 2.5. The study suggests that biogenic multicomponent nanocarriers show potential for safe and efficient gene delivery in cancer/gene therapy.
Collapse
Affiliation(s)
- Hajar Q Alijani
- Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Mehrdad Khatami
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares, University, Tehran, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Jan Michalička
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic
| | - Wu Wang
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-Von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Di Wang
- Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, Hermann-Von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Abolfazl Heydari
- Polymer Institute of the Slovak Academy of Science, Dúbravská Cesta 9, 845 41, Bratislava, Slovakia
| |
Collapse
|
3
|
Nutrizio M, Jurić S, Kucljak D, Švaljek SL, Vlahoviček-Kahlina K, Režek Jambrak A, Vinceković M. Encapsulation of Rosemary Extracts using High Voltage Electrical Discharge in Calcium Alginate/Zein/Hydroxypropyl Methylcellulose Microparticles. Foods 2023; 12:1570. [PMID: 37107365 PMCID: PMC10137539 DOI: 10.3390/foods12081570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The increased demand for functional food with added health benefits is directing industrial procedures toward more sustainable production of naturally added bioactive compounds. The objective of this research was to investigate the potential of bioactive compounds from rosemary extract obtained using high-voltage electrical discharge as a green extraction method, for microencapsulation as a protective method for future application in functional food. Four types of microparticles were made via the ionic gelation method using alginate (Alg), zein (Z), and hydroxypropyl methylcellulose (HPMC) biopolymers and were analyzed considering the physicochemical properties. The diameter of dry microparticles ranged from 651.29 to 1087.37 μm. The shape and morphology analysis of microparticles showed that the obtained microparticles were quite spherical with a granular surface. The high encapsulation efficiency was obtained with a loading capacity of polyphenols up to 11.31 ± 1.47 mg GAE/g (Alg/Z microparticles). The microencapsulation method showed protective effects for rosemary polyphenols against pH changes during digestion. Specifically, the addition of both zein and HPMC to calcium-alginate resulted in microparticles with a prolonged release for better availability of polyphenols in the intestine. This research background indicates that the release of rosemary extract is highly dependent on the initial biopolymer composition with high potential for further functional food applications.
Collapse
Affiliation(s)
- Marinela Nutrizio
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (D.K.); (S.L.Š.); (A.R.J.)
| | - Slaven Jurić
- Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (S.J.); (K.V.-K.); (M.V.)
| | - Damir Kucljak
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (D.K.); (S.L.Š.); (A.R.J.)
| | - Silvija Lea Švaljek
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (D.K.); (S.L.Š.); (A.R.J.)
| | | | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (D.K.); (S.L.Š.); (A.R.J.)
| | - Marko Vinceković
- Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (S.J.); (K.V.-K.); (M.V.)
| |
Collapse
|
4
|
Green synthesis of nickel ferrite nanoparticles for efficient enhancement of lignocellulosic hydrolysate-based biohydrogen production. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
5
|
Talukdar D, Kumar P, Sharma D, Balaramnavar VM, Afzal O, Altamimi ASA, Kazmi I, Al-Abbasi FA, Alzarea SI, Gupta G, Gupta MM. Anticancer Phytochemical-Based Nanoformulations: Therapeutic Intervention in Cancer Cell Lines. J Environ Pathol Toxicol Oncol 2023; 42:79-93. [PMID: 36734954 DOI: 10.1615/jenvironpatholtoxicoloncol.2022044317] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Phytochemicals have the potential to treat resistant cancer. They are delivered to the target site via nano-based carriers. Promising results are seen in preclinical and in vitro models, as phytochemical-based nanoformulations have improved cell cytotoxicity compared to single agents. They can synergistically inhibit cancer cell growth through p53 apoptosis in MCF-7 breast cancer cell lines. Moreover, synergic viability in reproducible glioma models at half inhibitory concentrations has been shown. Through caspase activation, phytochemical-based nanoformulations also increase cell death in 4T1 breast cancer cell lines. They have shown improved cytotoxicity at half inhibitory concentrations compared to single-agent drugs in cervical cancer. In terms of colorectal cancer, they have the potential to arrest cells in the S phase of the cell cycle and synergistically inhibit cell proliferation. In squamous cell carcinoma of the tongue, they inhibit protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathways. This review reports on developments in the therapeutic management of various cancers using phytochemical-based nanoformulations, which have shown potential benefits in the clinical management of cancer patients, halting/slowing the progression of the disease and ameliorating chemotherapy-induced toxicities.
Collapse
Affiliation(s)
- Debjyoti Talukdar
- Department of Medical Research, Armenian Russian International University "Mkhitar Gosh," Yerevan, Armenia
| | | | - Deepak Sharma
- Department of Pharmaceutical Technology, SOMS, Adamas University, Kolkata, West Bengal, India
| | | | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | | | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Gaurav Gupta
- Department of Pharmacology, Suresh GyanVihar University, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Madan Mohan Gupta
- School of Pharmacy, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago, West Indies
| |
Collapse
|
6
|
Arshad R, Kiani MH, Rahdar A, Sargazi S, Barani M, Shojaei S, Bilal M, Kumar D, Pandey S. Nano-Based Theranostic Platforms for Breast Cancer: A Review of Latest Advancements. Bioengineering (Basel) 2022; 9:bioengineering9070320. [PMID: 35877371 PMCID: PMC9311542 DOI: 10.3390/bioengineering9070320] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is a highly metastatic multifactorial disease with various histological and molecular subtypes. Due to recent advancements, the mortality rate in BC has improved over the past five decades. Detection and treatment of many cancers are now possible due to the application of nanomedicine in clinical practice. Nanomedicine products such as Doxil® and Abraxane® have already been extensively used for BC adjuvant therapy with favorable clinical outcomes. However, these products were designed initially for generic anticancer purposes and not specifically for BC treatment. With a better understanding of the molecular biology of BC, several novel and promising nanotherapeutic strategies and devices have been developed in recent years. In this context, multi-functionalized nanostructures are becoming potential carriers for enhanced chemotherapy in BC patients. To design these nanostructures, a wide range of materials, such as proteins, lipids, polymers, and hybrid materials, can be used and tailored for specific purposes against BC. Selective targeting of BC cells results in the activation of programmed cell death in BC cells and can be considered a promising strategy for managing triple-negative BC. Currently, conventional BC screening methods such as mammography, digital breast tomosynthesis (DBT), ultrasonography, and magnetic resonance imaging (MRI) are either costly or expose the user to hazardous radiation that could harm them. Therefore, there is a need for such analytical techniques for detecting BC that are highly selective and sensitive, have a very low detection limit, are durable, biocompatible, and reproducible. In detecting BC biomarkers, nanostructures are used alone or in conjunction with numerous molecules. This review intends to highlight the recent advances in nanomedicine in BC treatment and diagnosis, emphasizing the targeting of BC cells that overexpress receptors of epidermal growth factors. Researchers may gain insight from these strategies to design and develop more tailored nanomedicine for BC to achieve further improvements in cancer specificity, antitumorigenic effects, anti-metastasis effects, and drug resistance reversal effects.
Collapse
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy, University of Lahore, Lahore 54000, Pakistan;
| | | | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
- Correspondence: (A.R.); or (S.P.)
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran;
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 76169-13555, Iran;
| | - Shirin Shojaei
- Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah 67158-47141, Iran;
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India;
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
- Correspondence: (A.R.); or (S.P.)
| |
Collapse
|
7
|
Zadeh FA, Bokov DO, Salahdin OD, Abdelbasset WK, Jawad MA, Kadhim MM, Qasim MT, Kzar HH, Al-Gazally ME, Mustafa YF, Khatami M. Cytotoxicity evaluation of environmentally friendly synthesis Copper/Zinc bimetallic nanoparticles on MCF-7 cancer cells. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2022; 33:441-447. [PMID: 35342535 PMCID: PMC8936039 DOI: 10.1007/s12210-022-01064-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/11/2022] [Indexed: 01/13/2023]
Abstract
Bimetallic nanoparticles offer unique chemical, physical and optical properties that are not available for monometallic nanoparticles. Bimetallic nanoparticles play a major role in various therapeutic, industrial and energy fields. Recently, nanoparticles of Copper/Zinc bimetallic nanoparticles have attracted attention in various fields, especially medicine. In this study, bimetallic CuO/ZnO nanostructures were biosynthesized using plant extracts. The plant-mediated synthesis nanoparticles were characterized by Transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), Field Emission Scanning Electron Microscopy (FESEM) and Energy-Dispersive Spectroscopy (EDAX). The cytotoxicity of plant-mediated synthesis bimetallic nanoparticles and the synergistic effects of these nanoparticles in combination with the anticancer drug doxorubicin on MCF-7 cancer cells were evaluated by MTT assay.
Collapse
Affiliation(s)
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., Bldg. 2, Moscow, 119991 Russian Federation
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240 Russian Federation
| | | | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | | | - Mustafa M. Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit 52001 Iraq
- College of technical engineering, The Islamic University, Najaf, Iraq
- Department of Pharmacy, Osol Aldeen University College, Baghdad, Iraq
| | - Maytham T. Qasim
- Department of Anesthesia, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Hamzah H. Kzar
- Department of Chemistry, College of Veterinary Medicine, Al-Qasim Green University, Al-Qasim, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001 Iraq
| | - M. Khatami
- Department of Environment of Kerman, The Environmental Researches Center, Kerman, Iran
| |
Collapse
|
8
|
Alzoubi GM. Observation of Spin-Glass-like Behavior over a Wide Temperature Range in Single-Domain Nickel-Substituted Cobalt Ferrite Nanoparticles. NANOMATERIALS 2022; 12:nano12071113. [PMID: 35407229 PMCID: PMC9000762 DOI: 10.3390/nano12071113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022]
Abstract
In this study, single-domain NixCo1−xFe2O4 ferrite nanoparticles with 0≤x≤1 were hydrothermally prepared and characterized using X-ray diffraction, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and vibrating sample magnetometry. According to the Rietveld refinement results, all of the prepared nanoparticles were single phase with spinel-type structures. Increasing the Ni content increased the average crystallite size and X-ray density while decreasing the lattice constant. According to the TEM observations, the nanoparticles were spherical in shape. The formation of a single-phase spinel structure with two lattices centered at tetrahedral and octahedral sites was confirmed by the observation of two absorption bands in all FT-IR spectra. Magnetization data showed that the prepared nanoparticles of all compositions were ferrimagnetic across the entire temperature range of 300 K to 10 K. Magnetic properties such as saturation magnetization, remanent magnetization, coercivity, magnetic anisotropy, and magnetic moments per unit cell were found to decrease with increasing Ni content. The big difference in Hc of the x = 0, 0.25, 0.5, 0.75 ferrites between 300 K and 10 K suggested that these ferrite nanoparticles are truly single-domain nanoparticles. The small value of Hc of the NiFe2O4(x=1) ferrite and its very weak temperature dependence suggested that this sample is in a multi-domain regime. The ZFC–FC curves revealed the existence of spin-glass-like behavior in these ferrite nanoparticles over the entire temperature range.
Collapse
Affiliation(s)
- Gassem M Alzoubi
- Department of Physics, Faculty of Science, The Hashemite University, P. O. Box 330127, Zarqa 13133, Jordan
| |
Collapse
|
9
|
Li HT, Zhang WG, Niu L, Wang J, Zuo ZJ, Liu YM. Preparation of Ni-loaded oxygen-enriched vacancy TiO 2−x hierarchical micro-nanospheres and the study of their photocatalytic hydrogen evolution performance. NEW J CHEM 2022. [DOI: 10.1039/d1nj06197f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ni-loaded oxygen-enriched vacancy TiO2−x hierarchical micro-nanospheres were prepared, and the photocatalytic hydrogen production properties were greatly improved due to the synergetic effect between THS, oxygen vacancies and Ni-based promoters.
Collapse
Affiliation(s)
- Hao-tian Li
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan Shanxi, 030024, China
| | - Wang-gang Zhang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan Shanxi 030024, China
| | - Lu Niu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan Shanxi 030024, China
| | - Jian Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan Shanxi 030024, China
| | - Zhi-jun Zuo
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan Shanxi, 030024, China
| | - Yi-ming Liu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan Shanxi 030024, China
- Shanxi Academy of Analytical Sciences, Taiyuan Shanxi 030006, China
| |
Collapse
|
10
|
Qindeel M, Sargazi S, Hosseinikhah SM, Rahdar A, Barani M, Thakur VK, Pandey S, Mirsafaei R. Porphyrin‐Based Nanostructures for Cancer Theranostics: Chemistry, Fundamentals and Recent Advances. ChemistrySelect 2021. [DOI: 10.1002/slct.202103418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maimoona Qindeel
- Hamdard Institute of Pharmaceutical Sciences Hamdard University Islamabad Campus Islamabad Pakistan
- Department of Pharmacy Quaid-i-Azam University Islamabad Pakistan
| | - Saman Sargazi
- Cellular and Molecular Research Center Research Institute of Cellular and Molecular Sciences in Infectious Diseases Zahedan University of Medical Sciences Zahedan 9816743463 Iran
| | - Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
| | - Abbas Rahdar
- Department of Physics Faculty of Science University of Zabol Zabol Iran
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center Kerman University of Medical Sciences Kerman 7616913555 Iran
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre Scotland's Rural College Scotland Edinburgh EH9 3JG United Kingdom
- School of Engineering University of Petroleum & Energy Studies (UPES) Dehradun 248007 Uttarakhand India
| | - Sadanand Pandey
- Particulate Matter Research Center Research Institute of Industrial Science & Technology (RIST) 187-12, Geumho-ro Gwangyang-si Jeollanam-do 57801, Republic of Korea
| | - Razieh Mirsafaei
- Novel Drug Delivery Systems Research Centre and Department of Pharmaceutics School of Pharmacy Isfahan University of Medical Sciences Isfahan Iran
| |
Collapse
|
11
|
Sargazi S, Hosseinikhah SM, Zargari F, Chauhana NPS, Hassanisaadi M, Amani S. pH-responsive cisplatin-loaded niosomes: synthesis, characterization, cytotoxicity study and interaction analyses by simulation methodology. NANOFABRICATION 2021. [DOI: 10.1515/nanofab-2020-0100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Cisplatin (Cis) is an effective cytotoxic agent, but its administration has been challenged by kidney problems, reduced immunity system, chronic neurotoxicity, and hemorrhage. To address these issues, pH-responsive non-ionic surfactant vesicles (niosomes) by Span 60 and Tween 60 derivatized by cholesteryl hemisuccinate (CHEMS), a pH-responsive agent, and Ergosterol (helper lipid), were developed for the first time to deliver Cis. The drug was encapsulated in the niosomes with a high encapsulation efficiency of 89%. This system provided a responsive release of Cis in pH 5.4 and 7.4, thereby improving its targeted anticancer drug delivery. The noisome bilayer model was studied by molecular dynamic simulation containing Tween 60, Span 60, Ergosterol, and Cis molecules to understand the interactions between the loaded drug and noisome constituents. We found that the platinum and chlorine atoms in Cis are critical factors in distributing the drug between water and bilayer surface. Finally, the lethal effect of niosomal Cis was investigated on the MCF7 breast cancer cell line using 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Results from morphology monitoring and cytotoxic assessments suggested a better cell-killing effect for niosomal Cis than standard Cis. Together, the synthesis of stimuli-responsive niosomes could represent a promising delivery strategy for anticancer drugs.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases , Zahedan University of Medical Sciences , Zahedan 9816743463, Iran
| | - Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Farshid Zargari
- Pharmacology Research Center , Zahedan University of Medical Sciences , Zahedan 9816743463, Iran ; Department of Chemistry, Faculty of Science , University of Sistan and Baluchestan , Zahedan 98135674, Iran
| | - Narendra Pal Singh Chauhana
- Department of Chemistry, Faculty of Science , Bhupal Nobles’ university , Udaipur , 313002, Rajasthan , India
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection , Shahid Bahonar University of Kerman , Postal Code: 7618411764, Kerman, Iran
| | - Soheil Amani
- Department of chemistry, Institute for Advanced Studies in Basic Sciences (IASBS) , Zanjan , Iran
| |
Collapse
|
12
|
Barani M, Hajinezhad MR, Sargazi S, Rahdar A, Shahraki S, Lohrasbi-Nejad A, Baino F. In vitro and in vivo anticancer effect of pH-responsive paclitaxel-loaded niosomes. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:147. [PMID: 34862910 PMCID: PMC8643297 DOI: 10.1007/s10856-021-06623-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 11/06/2021] [Indexed: 05/11/2023]
Abstract
In this study, paclitaxel (PTX)-loaded pH-responsive niosomes modified with ergosterol were developed. This new formulation was characterized in terms of size, morphology, encapsulation efficiency (EE), and in vitro release at pH 5.2 and 7.4. The in vitro efficacy of free PTX and niosome/PTX was assessed using MCF7, Hela, and HUVEC cell lines. In order to evaluate the in vivo efficacy of niosomal PTX in rats as compared to free PTX, the animals were intraperitoneally administered with 2.5 mg/kg and 5 mg/kg niosomal PTX for two weeks. Results showed that the pH-responsive niosomes had a nanometric size, spherical morphology, 77% EE, and pH-responsive release in pH 5.2 and 7.4. Compared with free PTX, we found markedly lower IC50s when cancer cells were treated for 48 h with niosomal PTX, which also showed high efficacy against human cancers derived from cervix and breast tumors. Moreover, niosomal PTX induced evident morphological changes in these cell lines. In vivo administration of free PTX at the dose of 2.5 mg/kg significantly increased serum biochemical parameters and liver lipid peroxidation in rats compared to the control rats. The situation was different when niosomal PTX was administered to the rats: the 5 mg/kg dosage of niosomal PTX significantly increased serum biochemical parameters, but the group treated with the 2.5 mg/kg dose of niosomal PTX showed fewer toxic effects than the group treated with free PTX at the same dosage. Overall, our results provide proof of concept for encapsulating PTX in niosomal formulation to enhance its therapeutic efficacy.
Collapse
Affiliation(s)
- Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, 7616913555, Iran.
| | - Mohammad Reza Hajinezhad
- Basic Veterinary Science Department, Veterinary Faculty, University of Zabol, Zabol, 98613-35856, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan, 9816743463, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, 98613-35856, Iran.
| | - Sheida Shahraki
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan, 9816743463, Iran
| | - Azadeh Lohrasbi-Nejad
- Department of Agricultural Biotechnology, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy.
| |
Collapse
|
13
|
Zhang Y, Yang S, Wang J, Cai Y, Niu L, Liu X, Liu C, Qi H, Liu A. Copper sulfide nanoclusters with multi-enzyme-like activities and its application in acid phosphatase sensing based on enzymatic cascade reaction. Talanta 2021; 233:122594. [PMID: 34215083 DOI: 10.1016/j.talanta.2021.122594] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 12/16/2022]
Abstract
Nanozymes are artificial enzymes, which can substitute natural enzymes for wide range of catalysis-based applications. However, it is challenging to explore novel mimic enzymes or multi-enzyme mimics. Herein we report the facile preparation of uniform CuS nanoclusters (NCs), which possessed outstanding tetra-enzyme mimetic catalytic activities, including peroxidase (POD)-mimics, catalase (CAT)-mimics, ascorbic acid oxidase (AAO)-mimics and superoxide dismutase (SOD)-mimics. The catalytic mechanism of POD-like was coming from the oxygen vacancies of CuS. Furthermore, the steady-state kinetics of POD-, CAT- and AAO mimics of CuS NCs were systematically explored. On basis of the enzymatic cascade reaction that acid phosphatase (ACP) involved in a weak acidic environment, in the presence of O-phenylenediamine, quinoxaline fluorescent substance will be generated. Thus, a fluorescent biosensor platform was proposed for detection of ACP with the linear range of 0.05-25 U L-1 and limit of detection of 0.01 U L-1. The as-proposed method was applicable to real serum sample detection accurately and reproducibly. Considering the simple preparation, good stability, excellent multi-enzyme activities and controllable experimental operation, CuS NCs would provide a basis for expanding to other biocatalytic and biomedical applications.
Collapse
Affiliation(s)
- Yujiao Zhang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Shuqing Yang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Jin Wang
- Qingdao Institute for Food and Drug Control, 7 Longde Road, Qingdao, 266073, China
| | - Yuanyuan Cai
- School of Pharmacy, Medical College, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Lingxi Niu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Xuan Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Chongyang Liu
- School of Pharmacy, Medical College, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Huan Qi
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China; School of Pharmacy, Medical College, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| |
Collapse
|
14
|
Alijani HQ, Iravani S, Pourseyedi S, Torkzadeh-Mahani M, Barani M, Khatami M. Biosynthesis of spinel nickel ferrite nanowhiskers and their biomedical applications. Sci Rep 2021; 11:17431. [PMID: 34465814 PMCID: PMC8408215 DOI: 10.1038/s41598-021-96918-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Greener methods for the synthesis of various nanostructures with well-organized characteristics and biomedical applicability have demonstrated several advantages, including simplicity, low toxicity, cost-effectiveness, and eco-friendliness. Spinel nickel ferrite (NiFe2O4) nanowhiskers with rod-like structures were synthesized using a simple and green method; these nanostructures were evaluated by X-ray diffraction analysis, transmission electron microscopy, scanning electron microscopy, and X-ray energy diffraction spectroscopy. Additionally, the prepared nanowhiskers could significantly reduce the survival of Leishmania major promastigotes, at a concentration of 500 μg/mL; the survival of promastigotes was reduced to ≃ 26%. According to the results obtained from MTT test (in vitro), it can be proposed that further studies should be conducted to evaluate anti-leishmaniasis activity of these types of nanowhiskers in animal models.
Collapse
Affiliation(s)
- Hajar Q Alijani
- Department of Biotechnology, Shahid Bahonar University of Kerman, Kerman, Iran
- Research and Technology Institute of Plant Production (RTIPP), Shahid Bahonar University of Kerman, Kerman, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahram Pourseyedi
- Department of Biotechnology, Shahid Bahonar University of Kerman, Kerman, Iran.
- Research and Technology Institute of Plant Production (RTIPP), Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Masoud Torkzadeh-Mahani
- Biotechnology Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, 7616913555, Kerman, Iran
| | - Mehrdad Khatami
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran.
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
15
|
Enhancement of Thermostability of Aspergillus flavus Urate Oxidase by Immobilization on the Ni-Based Magnetic Metal-Organic Framework. NANOMATERIALS 2021; 11:nano11071759. [PMID: 34361145 PMCID: PMC8308117 DOI: 10.3390/nano11071759] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/27/2021] [Accepted: 07/04/2021] [Indexed: 12/12/2022]
Abstract
The improvement in the enzyme activity of Aspergillus flavus urate oxidase (Uox) was attained by immobilizing it on the surface of a Ni-based magnetic metal–organic framework (NimMOF) nanomaterial; physicochemical properties of NimMOF and its application as an enzyme stabilizing support were evaluated, which revealed a significant improvement in its stability upon immobilization on NimMOF (Uox@NimMOF). It was affirmed that while the free Uox enzyme lost almost all of its activity at ~40–45 °C, the immobilized Uox@NimMOF retained around 60% of its original activity, even retaining significant activity at 70 °C. The activation energy (Ea) of the enzyme was calculated to be ~58.81 kJ mol−1 after stabilization, which is approximately half of the naked Uox enzyme. Furthermore, the external spectroscopy showed that the MOF nanomaterials can be coated by hydrophobic areas of the Uox enzyme, and the immobilized enzyme was active over a broad range of pH and temperatures, which bodes well for the thermal and long-term stability of the immobilized Uox on NimMOF.
Collapse
|
16
|
Ruiz-Pulido G, Medina DI, Barani M, Rahdar A, Sargazi G, Baino F, Pandey S. Nanomaterials for the Diagnosis and Treatment of Head and Neck Cancers: A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3706. [PMID: 34279276 PMCID: PMC8269895 DOI: 10.3390/ma14133706] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022]
Abstract
Head and neck cancer (HNC) is a category of cancers that typically arise from the nose-, mouth-, and throat-lining squamous cells. The later stage of HNC diagnosis significantly affects the patient's survival rate. This makes it mandatory to diagnose this cancer with a suitable biomarker and imaging techniques at the earlier stages of growth. There are limitations to traditional technologies for early detection of HNC. Furthermore, the use of nanocarriers for delivering chemo-, radio-, and phototherapeutic drugs represents a promising approach for improving the outcome of HNC treatments. Several studies with nanostructures focus on the development of a targeted and sustained release of anticancer molecules with reduced side effects. Besides, nanovehicles could allow co-delivering of anticancer drugs for synergistic activity to counteract chemo- or radioresistance. Additionally, a new generation of smart nanomaterials with stimuli-responsive properties have been developed to distinguish between unique tumor conditions and healthy tissue. In this light, the present article reviews the mechanisms used by different nanostructures (metallic and metal oxide nanoparticles, polymeric nanoparticles, quantum dots, liposomes, nanomicelles, etc.) to improve cancer diagnosis and treatment, provides an up-to-date picture of the state of the art in this field, and highlights the major challenges for future improvements.
Collapse
Affiliation(s)
- Gustavo Ruiz-Pulido
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza 52926, Mexico
| | - Dora I Medina
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza 52926, Mexico
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 76169-14115, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
| | - Ghasem Sargazi
- Noncommunicable Diseases Research Center, Bam University of Medical Science, Bam 76617-71967, Iran
| | - Francesco Baino
- Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, 10129 Torino, Italy
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
- Particulate Matter Research Center, Research Institute of Industrial Science & Technology (RIST), 187-12, Geumho-ro, Gwangyang-si 57801, Korea
| |
Collapse
|
17
|
Rabiee N, Khatami M, Jamalipour Soufi G, Fatahi Y, Iravani S, Varma RS. Diatoms with Invaluable Applications in Nanotechnology, Biotechnology, and Biomedicine: Recent Advances. ACS Biomater Sci Eng 2021; 7:3053-3068. [PMID: 34152742 DOI: 10.1021/acsbiomaterials.1c00475] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diatoms are unicellular microalga found in soil and almost every aquatic environment (marine and fresh water). Biogenic silica and diatoms are attractive for biotechnological and industrial applications, especially in the field of biomedicine, industrial/synthetic manufacturing processes, and biomedical/pharmaceutical sciences. Deposition of silica by diatoms allows them to create micro- or nanoscale structures which may be utilized in nanomedicine and especially in drug/gene delivery. Diatoms with their unique architectures, good thermal stability, suitable surface area, simple chemical functionalization/modification procedures, ease of genetic manipulations, optical/photonic characteristics, mechanical resistance, and eco-friendliness, can be utilized as smart delivery platforms. The micro- to nanoscale properties of the diatom frustules have garnered a great deal of attention for their application in diverse areas of nanotechnology and biotechnology, such as bioimaging/biosensing, biosensors, drug/gene delivery, photodynamic therapy, microfluidics, biophotonics, solar cells, and molecular filtrations. Additionally, the genetically engineered diatom microalgae-derived nanoporous biosilica have enabled the targeted anticancer drug delivery to neuroblastoma and B-lymphoma cells as well as the mouse xenograft model of neuroblastoma. In this perspective, current trends and recent advances related to the applications of diatoms for the synthesis of nanoparticles, gene/drug delivery, biosensing determinations, biofuel production, and remediation of heavy metals are deliberated, including the underlying significant challenges and future perspectives.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Mehrdad Khatami
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran.,Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University in Olomouc, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| |
Collapse
|
18
|
Leishmanicidal activities of biosynthesized BaCO 3 (witherite) nanoparticles and their biocompatibility with macrophages. Bioprocess Biosyst Eng 2021; 44:1957-1964. [PMID: 33934243 DOI: 10.1007/s00449-021-02576-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
The aim of this study was cost-effective and greener synthesis of barium carbonate (BaCO3 or witherite) nanoparticles with economic importance, and to evaluate their therapeutic potentials and biocompatibility with immune cells. Barium carbonate nanoparticles were biosynthesized using black elderberry extract in one step with non-toxic precursors and simple laboratory conditions; their morphologies and specific structures were analyzed using field emission scanning electron microscopy with energy dispersive X-ray spectroscopy (FESEM-EDX). The therapeutic capabilities of these nanoparticles on the immune cells of murine macrophages J774 and promastigotes Leishmania tropica were evaluated. BaCO3 nanoparticles with IC50 = 46.6 µg/mL were more effective than negative control and glucantium (positive control) in reducing promastigotes (P < 0.01). Additionally, these nanoparticles with a high value of cytotoxicity concentration 50% (CC50) were less toxic to macrophage cells than glucantime; however, they were significantly different at high concentrations compared to the negative control.
Collapse
|
19
|
Eidi E, Kassaee MZ, Nasresfahani Z. Efficient synthesis of symmetrical anhydrides by cross dehydrogenative coupling of aryl aldehydes over CuFe2O4 nanoparticles. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02741-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Degradation of Ciprofloxacin Using Ultrasound/ZnO/Oxone Process from Aqueous Solution-Lab-Scale Analysis and Optimization. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00838-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
He B, Wang K. A "signal off" aptasensor based on NiFe 2O 4 NTs and Au@Pt NRs for the detection of deoxynivalenol via voltammetry. Mikrochim Acta 2021; 188:23. [PMID: 33404751 DOI: 10.1007/s00604-020-04666-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022]
Abstract
A "signal off" aptasensor has been developed to detect deoxynivalenol (DON). DON aptamers (Apt) were used as biological recognition elements, nickel ferrite nanotubes (NiFe2O4 NTs) are used as the base material to increase the surface area of the electrode, and the Au@Pt NRs were used as carriers for loading signal labels thionine (Thi) and complementary strand (cDNA). In the presence of DON it will be specifically captured by Apt, then the competition mechanism was triggered; the signal molecules fall off from the electrode surface, which then causes the electrode signal to decrease. NiFe2O4 NTs and Au@Pt NRs were characterized by transmission electron microscope (TEM), scanning electron micrograph (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The designed sensor provides a concentration range of 1 × 10-8 to 5 × 10-4 mg mL-1 and limit of detection of 3.02 × 10-9 mg mL-1. Determination of DON in corn meal samples was investigated and the recovery was 98.4 to 103.5%. The proposed aptasensor displayed good sensitivity, high specificity, and acceptable reproducibility. Graphical abstract Based on NiFe2O4 NTs as substrate material and Au@Pt NRs as signal label prepared DON aptasensor for the determination of DON.
Collapse
Affiliation(s)
- Baoshan He
- School of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Lianhua Road 100#, Zhengzhou High & New Technology Industries Development Zone, Zhengzhou, 450001, Henan Province, People's Republic of China.
| | - Kai Wang
- School of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Lianhua Road 100#, Zhengzhou High & New Technology Industries Development Zone, Zhengzhou, 450001, Henan Province, People's Republic of China
| |
Collapse
|
22
|
Sharma A, Wakode S, Sharma S, Fayaz F, Pottoo FH. Methods and Strategies Used in Green Chemistry: A Review. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200802025233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Green chemistry plays an important role in the development of sustainable production
systems which involves tremendous research efforts on the design of synthetic
and analytical techniques through resource-efficient ways. The improvement in synthetic
reaction performances encourages the modern society to minimize energy and reagent
consumption and waste generation. Explosion of the chemicals are referred as extremely
toxic substances and have been allied with major harmful health effects, though no cure
has been established due to the lack of curative therapeutic approaches. In view of the
facts, green chemistry strategies trigger a new hope in the synthesis of safer biologically
active compounds to meet the demands of disease free environment. Here, we highlighted
the development of various compounds and greener techniques such as ultrasoundassisted
method, microwave-assisted method, green solvent reactions, solvent free reactions, biomolecules and
nanoformulations as a new healthy approach.
Collapse
Affiliation(s)
- Anjali Sharma
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, New Delhi, 110017, India
| | - Sharad Wakode
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, New Delhi, 110017, India
| | - Supriya Sharma
- Department of Pharmacognosy, Delhi Pharmaceutical Sciences and Research University, Sector- 3, MB Road, Pushp Vihar, New Delhi, 110017, India
| | - Faizana Fayaz
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, New Delhi, 110017, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. BOX 1982, Damman, 31441, Saudi Arabia
| |
Collapse
|
23
|
Javed B, Nadhman A, Mashwani ZUR. Optimization, characterization and antimicrobial activity of silver nanoparticles against plant bacterial pathogens phyto-synthesized by Mentha longifolia. MATERIALS RESEARCH EXPRESS 2020; 7:085406. [DOI: 10.1088/2053-1591/abaf19] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Abstract
The present study involves the Phyto-synthesis of the colloidal silver nanoparticles (AgNPs) and their applications to biologically control plant bacterial pathogens. The synthesis of AgNPs was monitored by measuring the absorbance and a characteristic surface plasmon resonance (SPR) band was observed at 450 nm. The different reaction conditions such as the temperature, incubation period, the concentration of the silver salt and the pH were optimized using the factorial design of the experiment for the better yield and the synthesis of AgNPs. The microscopic results showed that the AgNPs are anisotropic and nearly spherical and exist in the size range of ∼20–100 nm while the EDX analysis confirmed the presence of the elemental Ag. The x-ray diffraction pattern confirmed that the AgNPs are crystalline. The hydrodynamic diameter of AgNPs has measured in the range of ∼13–35 nm and the average size of a single particle was 15.55 nm. The ability of the AgNPs to biologically control the plant bacterial pathogens was measured in terms of antibacterial activity against gram-negative pathogenic bacterial strains; Pectobacterium carotovorum, Xanthomonas oryzae, Xanthomonas vesicatoria and Ralstonia solanacearum and potential antimicrobial activity were observed between 2–12 μg ml−1. The biocompatibility studies revealed that the AgNPs are highly biocompatible (LD100 208 μg ml−1) against RBCs. These findings endorse the applications of AgNPs to biological control the plant bacterial pathogens and the consumption of the plants treated with NPs is biocompatible for the humans.
Collapse
|
24
|
Ahmad W, Khan AU, Shams S, Qin L, Yuan Q, Ahmad A, Wei Y, Khan ZUH, Ullah S, Rahman AU. Eco-benign approach to synthesize spherical iron oxide nanoparticles: A new insight in photocatalytic and biomedical applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 205:111821. [DOI: 10.1016/j.jphotobiol.2020.111821] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/13/2020] [Accepted: 02/16/2020] [Indexed: 01/19/2023]
|