1
|
Giuri D, Cenciarelli F, Tomasini C. Low-molecular-weight gels from amino acid and peptide derivatives for controlled release and delivery. J Pept Sci 2024; 30:e3643. [PMID: 39010663 DOI: 10.1002/psc.3643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024]
Abstract
Low-molecular-weight (LMW) gelators are a versatile class of compounds able to self-assemble and to form supramolecular materials, such as gels. The use of LMW peptides to produce these gels shows many advantages, because of their wide structure tunability, the low-cost and effective synthesis, and the in vivo biocompatibility and biodegradability, which makes them optimal candidates for release and delivery applications. In addition, in these materials, the binding of the hosts may occur through a variety of noncovalent interactions, which are also the main factors responsible for the self-assembly of the gelators, and through specific interactions with the fibers or the pores of the gel matrix. This review aims to report LMW gels based on amino acid and peptide derivatives used for the release of many different species (drugs, fragrances, dyes, proteins, and cells) with a focus on the possible strategies to incorporate the cargo in these materials, and to demonstrate how versatile these self-assembled materials are in several applications.
Collapse
Affiliation(s)
- Demetra Giuri
- Dipartimento di Chimica Giacomo Ciamician, Università di Bologna, Bologna, Italy
| | - Fabia Cenciarelli
- Dipartimento di Chimica Giacomo Ciamician, Università di Bologna, Bologna, Italy
| | - Claudia Tomasini
- Dipartimento di Chimica Giacomo Ciamician, Università di Bologna, Bologna, Italy
| |
Collapse
|
2
|
Chevigny R, Rahkola H, Sitsanidis ED, Korhonen E, Hiscock JR, Pettersson M, Nissinen M. Solvent-Induced Transient Self-Assembly of Peptide Gels: Gelator-Solvent Reactions and Material Properties Correlation. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:407-416. [PMID: 38222938 PMCID: PMC10782441 DOI: 10.1021/acs.chemmater.3c02327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
Herein, we introduce a new methodology for designing transient organogels that offers tunability of the mechanical properties simply by matching the protective groups of the precursor to that of the solvent. We developed solvent-induced transient materials in which the solvent chemically participates in a set of reactions and actively supports the assembly event. The activation of a single precursor by an acid (accelerator) yields the formation of two distinct gelators and induces gelation. The interconversion cycle is supplied by the secondary solvent (originating from hydrolysis of the primary solvent by the accelerator), which then progressively solubilizes the gel network. We show that this gelation method offers a direct correlation between the mechanical and transient properties by modifying the chemical structure of the precursors and the presence of an accelerator in the system. Such a method paves the way for the design of self-abolishing and mechanically tunable materials for targeted purposes. The biocompatibility and versatility of amino acid-based gelators can offer a wide range of biomaterials for applications requiring a controllable and definite lifetime such as drug delivery platforms exhibiting a burst release or self-abolishing cell culture substrates.
Collapse
Affiliation(s)
- Romain Chevigny
- Department
of Chemistry, Nanoscience Center, University
of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Henna Rahkola
- Department
of Chemistry, Nanoscience Center, University
of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Efstratios D. Sitsanidis
- Department
of Chemistry, Nanoscience Center, University
of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Elsa Korhonen
- Department
of Chemistry, Nanoscience Center, University
of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Jennifer R. Hiscock
- School
of Physical Sciences, University of Kent, Canterbury, Kent CT2 7NH, U.K.
| | - Mika Pettersson
- Department
of Chemistry, Nanoscience Center, University
of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Maija Nissinen
- Department
of Chemistry, Nanoscience Center, University
of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| |
Collapse
|
3
|
Vishnevetskii DV, Mekhtiev AR, Averkin DV, Polyakova EE. Cysteine-Silver-Polymer Systems for the Preparation of Hydrogels and Films with Potential Applications in Regenerative Medicine. Gels 2023; 9:924. [PMID: 38131910 PMCID: PMC10742544 DOI: 10.3390/gels9120924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
Herein, the problem concerning the poorer mechanical properties of gels based on low molecular weight gelators (LMWGs)-L-cysteine and silver nitrate-was solved by the addition of various polymers-polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP) and polyethylene glycol (PEG)-to the initial cysteine-silver sol (CSS). The physicochemical methods of analysis-viscosimetry, UV spectroscopy, DLS, and SEM-identified that cysteine-silver hydrogels (CSG) based on PVA possess the best rheological properties and porous microstructure (the average pore size is 2-10 µm) compared to gels without the polymer or with PVP or PEG. Such gels are able to form cysteine-silver cryogels (CSC) and then porous cysteine-silver films (CSF) with an average pore size of 10-20 µm and good mechanical, swelling, and adhesion to skin characteristics as long as the structure of CSS particles remains stable. In vitro experiments have shown that hydrogels are non-toxic to normal human fibroblast cells. The obtained materials could potentially be applied to regenerative medicine.
Collapse
Affiliation(s)
- Dmitry V. Vishnevetskii
- Department of Physical Chemistry, Tver State University, Building 33, Zhelyabova Str., Tver 170100, Russia;
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., Moscow 191121, Russia
| | - Arif R. Mekhtiev
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Str., Moscow 191121, Russia
| | - Dmitry V. Averkin
- Russian Metrological Institute of Technical Physics and Radio Engineering, Worker’s Settlement Mendeleevo, Building 11, Moscow 141570, Russia;
| | - Elizaveta E. Polyakova
- Department of Physical Chemistry, Tver State University, Building 33, Zhelyabova Str., Tver 170100, Russia;
| |
Collapse
|
4
|
Sichanova M, Geneva M, Petrova M, Miladinova-Georgieva K, Kirova E, Nedev T, Tsekova D, Ivanova V, Trendafilova A. Influence of the Abiotic Elicitors Ag Salts of Aspartic Acid Derivatives, Self-Organized in Nanofibers with Monomeric and Dimeric Molecular Structures, on the Antioxidant Activity and Stevioside Content in Micropropagated Stevia rebaudiana Bert. PLANTS (BASEL, SWITZERLAND) 2023; 12:3574. [PMID: 37896037 PMCID: PMC10610515 DOI: 10.3390/plants12203574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
The use of nanomaterials in biotechnology for the in vitro propagation of medical plants and the accumulation of certain biologically active metabolites is becoming an efficient strategy. This study aimed to evaluate the influence of the concentration (0, 1, 10, 50, and 100 mg L-1) of two types of nanofibers on the growth characteristics, the antioxidant status, and the production of steviol glycosides in micropropagated Stevia rebaudiana Bert. plantlets. The nanofibers were synthesized by aspartic acid derivatives (L-Asp) Ag salts self-organized into nanofibers with two different molecular structures: monomeric, containing one residue of L-Asp with one hydrophilic head which bonds one Ag ion (NF1-Ag salt); and dimeric, containing two residues of L-Asp with two hydrophilic heads which bond two Ag ions (NF2-Ag salt). An increase in the shoots from the explants' number and length, biomass accumulation, and micropropagation rate was achieved in the plants treated with the NF1-Ag salt in concentrations from 1 to 50 mg L-1 after 30 days of in vitro proliferation compared to the NF2-Ag salt. In contrast, the plants grown on MS media supplemented with NF2-Ag salt exhibited an increase in the level of stevioside, rebaudioside A, and mono- (CQA) and dicaffeoylquinic (DCQA) acids as compared to the NF1-Ag salt.
Collapse
Affiliation(s)
- Mariana Sichanova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Bldg. 21, 1113 Sofia, Bulgaria; (M.S.); (M.P.); (K.M.-G.); (E.K.); (T.N.)
| | - Maria Geneva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Bldg. 21, 1113 Sofia, Bulgaria; (M.S.); (M.P.); (K.M.-G.); (E.K.); (T.N.)
| | - Maria Petrova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Bldg. 21, 1113 Sofia, Bulgaria; (M.S.); (M.P.); (K.M.-G.); (E.K.); (T.N.)
| | - Kamelia Miladinova-Georgieva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Bldg. 21, 1113 Sofia, Bulgaria; (M.S.); (M.P.); (K.M.-G.); (E.K.); (T.N.)
| | - Elisaveta Kirova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Bldg. 21, 1113 Sofia, Bulgaria; (M.S.); (M.P.); (K.M.-G.); (E.K.); (T.N.)
| | - Trendafil Nedev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Bldg. 21, 1113 Sofia, Bulgaria; (M.S.); (M.P.); (K.M.-G.); (E.K.); (T.N.)
| | - Daniela Tsekova
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 8“St. Kl. Ohridski” Blvd, 1756 Sofia, Bulgaria;
| | - Viktoria Ivanova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Bldg. 9, 1113 Sofia, Bulgaria; (V.I.); (A.T.)
| | - Antoaneta Trendafilova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Bldg. 9, 1113 Sofia, Bulgaria; (V.I.); (A.T.)
| |
Collapse
|
5
|
Pandya AK, Vora LK, Umeyor C, Surve D, Patel A, Biswas S, Patel K, Patravale VB. Polymeric in situ forming depots for long-acting drug delivery systems. Adv Drug Deliv Rev 2023; 200:115003. [PMID: 37422267 DOI: 10.1016/j.addr.2023.115003] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
Polymeric in situ forming depots have emerged as highly promising drug delivery systems for long-acting applications. Their effectiveness is attributed to essential characteristics such as biocompatibility, biodegradability, and the ability to form a stable gel or solid upon injection. Moreover, they provide added versatility by complementing existing polymeric drug delivery systems like micro- and nanoparticles. The formulation's low viscosity facilitates manufacturing unit operations and enhances delivery efficiency, as it can be easily administered via hypodermic needles. The release mechanism of drugs from these systems can be predetermined using various functional polymers. To enable unique depot design, numerous strategies involving physiological and chemical stimuli have been explored. Important assessment criteria for in situ forming depots include biocompatibility, gel strength and syringeability, texture, biodegradation, release profile, and sterility. This review focuses on the fabrication approaches, key evaluation parameters, and pharmaceutical applications of in situ forming depots, considering perspectives from academia and industry. Additionally, insights about the future prospects of this technology are discussed.
Collapse
Affiliation(s)
- Anjali K Pandya
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400 019, India; School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Chukwuebuka Umeyor
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400 019, India; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka 422001, Anambra State, Nigeria
| | - Dhanashree Surve
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Akanksha Patel
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad, Telangana 500078, India
| | - Ketankumar Patel
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Vandana B Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400 019, India.
| |
Collapse
|
6
|
Cao Z, Chen Y, Bai S, Zheng Z, Liu Y, Gui S, Shan S, Wu J, He N. In situ formation of injectable organogels for punctal occlusion and sustained release of therapeutics: design, preparation, in vitro and in vivo evaluation. Int J Pharm 2023; 638:122933. [PMID: 37030642 DOI: 10.1016/j.ijpharm.2023.122933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/18/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
The treatment of dry eye mainly includes instillation of cyclosporine A (CsA) nanoemulsion or the use of punctal plugs. Therefore, in this study, a novel injectable in situ organogel plug was developed using CsA as a model drug, stearic acid, injectable soybean oil, and N-methyl-2-pyrrolidinone (NMP) (1.25:10:0.6, w/v/v) as gel materials, to provide a dual mechanism for dry eye treatment. The formulated CsA injectable in situ organogel (CsA-OG) was evaluated in terms of stability, in vitro release, rheology, ocular irritation, punctal occlusion tests, and ocular distribution assessment. In vivo ocular distribution investigations showed that CsA-OG achieved considerably higher Cmax (1.94, 1.92 and 1.97-fold respectively) and AUC0-72h in the cornea, conjunctiva, and sclera (2.49, 2.27 and 2.15-fold respectively) than ciclosporin eye drops (p < 0.05). In vitro model evaluation demonstrated significant decrease in flow flux to 52.78% at 2 min after CsA-OG injection. According to evaluation of the in vivo model, the organogel plug can completely block the lacrimal passages and greatly decrease the lacrimal drainage rate (p < 0.05). The above results suggest that these intracanalicular CsA-OG plugs can offer more extensive clinical applications than existing lacrimal drainage plugs and may act as a drug delivery system.
Collapse
Affiliation(s)
- Ziqin Cao
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yangnan Chen
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Shaoyun Bai
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zhiyun Zheng
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medical Sciences, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, China.
| | - Yan Liu
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Shuangying Gui
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medical Sciences, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, China
| | - Shuang Shan
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jiabao Wu
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ning He
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medical Sciences, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, China.
| |
Collapse
|
7
|
Narayanan VHB, Lewandowski A, Durai R, Gonciarz W, Wawrzyniak P, Brzezinski M. Spray-dried tenofovir alafenamide-chitosan nanoparticles loaded oleogels as a long-acting injectable depot system of anti-HIV drug. Int J Biol Macromol 2022; 222:473-486. [DOI: 10.1016/j.ijbiomac.2022.09.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/23/2022] [Accepted: 09/17/2022] [Indexed: 11/24/2022]
|
8
|
A functional spreadable canola and milk proteins oleogels as a healthy system for candy gummies. Sci Rep 2022; 12:12619. [PMID: 35871205 PMCID: PMC9308800 DOI: 10.1038/s41598-022-16809-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/15/2022] [Indexed: 11/21/2022] Open
Abstract
Recently, interest and demand for healthy and useful food products have become a global requirement. Thus, the production of functional foods with high polyunsaturated fatty acids and antioxidants is very challenging. In this study, four functional spreadable oleogels based on canola oil and milk proteins were developed. These spreadable oleogels were used as an innovative model for the preparation of candy gummies. The chemical composition, oxidative stability, and effects of storage conditions were studied. The results showed that the fat content in spreadable oleogels and gummies ranged from 35 to 47 and 2.40–4.15%, respectively. The protein content in spreadable doum and carrot was 7.41%, while it was 6.15% in the spreadable plain and ranged from 10.25 to 12.78% in gummies. The hardness of spreadable oleogels and gummies ranged from 0.3 to 0.9 and 6.22–16.30 N, respectively. Spreadable carrot and spreadable doum had peroxide values greater than 8 meqO2/kg after storage, whereas spreadable plain and spreadable canola oleogel had better oxidative stability. The antioxidant activity of spreadable oleogels and gummies ranged from 66.98–46.83% to 51.44–40.37%, respectively. In addition, transmission electron microscopy and polarized light microscopy micrographs showed the presence of a coherent entangled network between oleogels and nutritional polymers. The oil binding capacity of spreadable carrot oleogel had a maximum value of 97.89%, while formed gummies were higher than 99%. This study showed a promising way to make functional spreadable oleogels as a model for food products that are good for health and nutrition.
Collapse
|
9
|
Corredor-Chaparro MY, Vargas-Riveros D, Mora-Huertas CE. Hypromellose – Collagen hydrogels/sesame oil organogel based bigels as controlled drug delivery systems. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Vishnevetskii DV, Mekhtiev AR, Perevozova TV, Ivanova AI, Averkin DV, Khizhnyak SD, Pakhomov PM. L-Cysteine as a reducing/capping/gel-forming agent for the preparation of silver nanoparticle composites with anticancer properties. SOFT MATTER 2022; 18:3031-3040. [PMID: 35355035 DOI: 10.1039/d2sm00042c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The present article reports the in situ preparation of silver nanoparticles (AgNPs) homogeneously distributed in the gel matrix formed using only L-cysteine (CYS) as a bio-reducing agent. The physicochemical methods of analysis confirmed the formation of a gel-network from aggregates consisting of spherical/elliptical cystine-stabilized AgNPs (core) and cysteine/Ag+ complexes (shell) regardless of the used silver salt - AgNO3, AgNO2 or AgOOCCH3. CYS/AgNO3 and CYS/AgOOCCH3 aqueous solution systems needed the addition of electrolytes (Cl- and SO42-) for the gelation process, but the gel-formation in CYS/AgNO2 occurred in one stage without any additional components. The AgNP sizes were about 1-5 nm in diameter for CYS/AgNO3, 5-10 nm for CYS/AgOOCCH3 and 20-40 nm for CYS/AgNO2 systems. The zeta-potential values varied from +60 mV for CYS/AgNO3 to +25 mV for the CYS/AgNO2 system. The MTT-test showed that the obtained composites suppressed the MCF-7 breast cancer cells and the CYS/AgNO3 system possessed the highest activity. Flow cytofluorimetry confirmed that the cell death occurred by apoptosis and this effect was the strongest for the CYS/AgNO3 system. All systems were non-toxic to fibroblast cells. The novel simplest "green chemistry" approach, combining the knowledge of organic, inorganic, physical and supramolecular chemistry could open possibilities for the creation of the newest soft gel materials used in various fields of our life.
Collapse
Affiliation(s)
- Dmitry V Vishnevetskii
- Department of Physical Chemistry and Applied Physics, Tver State University (TSU), Tver, 170100, Russia.
- Institute of Biomedical Chemistry (IBMC), Moscow, 119121, Russia.
| | - Arif R Mekhtiev
- Institute of Biomedical Chemistry (IBMC), Moscow, 119121, Russia.
| | - Tatyana V Perevozova
- Department of Physical Chemistry and Applied Physics, Tver State University (TSU), Tver, 170100, Russia.
| | - Alexandra I Ivanova
- Department of Physical Chemistry and Applied Physics, Tver State University (TSU), Tver, 170100, Russia.
| | - Dmitry V Averkin
- Department of Physical Chemistry and Applied Physics, Tver State University (TSU), Tver, 170100, Russia.
- Russian Metrological Institute of Technical Physics and Radio Engineering (FSUE VNIIFTRI), Moscow, 141570, Russia
| | - Svetlana D Khizhnyak
- Department of Physical Chemistry and Applied Physics, Tver State University (TSU), Tver, 170100, Russia.
| | - Pavel M Pakhomov
- Department of Physical Chemistry and Applied Physics, Tver State University (TSU), Tver, 170100, Russia.
| |
Collapse
|
11
|
l-Lysine-Based Gelators for the Formation of Oleogels in Four Vegetable Oils. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041369. [PMID: 35209157 PMCID: PMC8876487 DOI: 10.3390/molecules27041369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/05/2022]
Abstract
Supramolecular oleogel is a soft material with a three-dimensional structure, formed by the self-assembly of low-molecular-weight gelators in oils; it shows broad application prospects in the food industry, environmental protection, medicine, and other fields. Among all the gelators reported, amino-acid-based compounds have been widely used to form organogels and hydrogels because of their biocompatibility, biodegradation, and non-toxicity. In this study, four Nα, Nε-diacyl-l-lysine gelators (i.e., Nα, Nε-dioctanoyl-l-lysine; Nα, Nε-didecanoyl-l-lysine; Nα, Nε-dilauroyl-l-lysine; and Nα, Nε-dimyristoyl-l-lysine) were synthesized and applied to prepare oleogels in four kinds of vegetable oils. Gelation ability is affected not only by the structure of the gelators but also by the composition of the oils. The minimum gel concentration (MGC) increased with the increase in the acyl carbon-chain length of the gelators. The strongest gelation ability was displayed in olive oil for the same gelator. Rheological properties showed that the mechanical strength and thermal stability of the oleogels varied with the carbon-chain length of the gelators and the type of vegetable oil. The microstructure of oleogels is closely related to the carbon-chain length of gelators, regardless of oil type. The highest oil-binding capacity (OBC) was obtained in soybean oil for all four gelators, and Nα, Nε-dimyristoyl-l-lysine showed the best performance for entrapping oils.
Collapse
|
12
|
Mohammadpour F, Kamali H, Hadizadeh F, Bagheri M, Shiadeh SNR, Nazari A, Oroojalian F, Khodaverdi E. The PLGA Microspheres Synthesized by a Thermosensitive Hydrogel Emulsifier for Sustained Release of Risperidone. J Pharm Innov 2021. [DOI: 10.1007/s12247-021-09544-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Kommineni N, Nottingham E, Bagde A, Patel N, Rishi AK, Dev SRS, Singh M. Role of nano-lipid formulation of CARP-1 mimetic, CFM-4.17 to improve systemic exposure and response in osimertinib resistant non-small cell lung cancer. Eur J Pharm Biopharm 2021; 158:172-184. [PMID: 33220423 PMCID: PMC7857068 DOI: 10.1016/j.ejpb.2020.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/22/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND EGFR mutated NSCLCs have been shown to employ the use of CARP-1 in overriding the signaling inhibition of tyrosine kinase inhibitors (such as Osimertinib). CFM 4.17 is a CARP-1 inhibitor which has a promising role in overcoming Tyrosine Kinase Inhibitor (TKI) resistance when used as a pre-treatment through promoting apoptosis. Lack of solubility, hydrophobicity leading to poor systemic exposure are the limitations of CFM 4.17. This can be overcome by nano lipid-based formulation (NLPF) of CFM 4.17 which can enhance systemic exposure in preclinical animal models as well as improve therapeutic efficacy in drug-resistant cancer cell lines. METHODS Molecular docking simulation studies were performed for CFM 4.17. CFM 4.17-NLPF was formulated by melt dispersion technique and optimized using a Box-Behnken designed surface response methodology approach using Design Expert and MATLAB. In vitro, CFM 4.17 release studies were performed in simulated gastric fluids (SGF-pH-1.2) and simulated intestinal fluids (SIF- pH-6.8). Cell viability assays were performed with HCC827 and H1975 Osimertinib resistant and non-resistant cells in 2D and 3D culture models of Non-small cell lung cancer to determine the effects of CFM 4.17 pre-treatment in Osimertinib response. In vivo pharmacokinetics in rats were performed measuring the effects of NLPF on CFM 4.17 to improve the systemic exposure. RESULTS CFM 4.17 was well accommodated in the active pocket of the active site of human EGFR tyrosine kinase. CFM 4.17 NLPF was optimized with robust experimental design with particle size less than 300 nm and % entrapment efficiency of 92.3 ± 1.23. Sustained diffusion-based release of CFM 4.17 was observed from NLPF in SGF and SIFs with Peppas and Higuchi based release kinetics, respectively. CFM 4.17 pretreatment improved response by decreasing IC50 value by 2-fold when compared to single treatment Osimertinib in both 2D monolayer and 3D spheroid assays in HCC827 and H1975 Osimertinib resistant and non-resistant cells of Non-small cell lung cancer. There were no differences between CFM 4.17 NLPF and suspension in 2D monolayer culture pretreatments; however, The 3D culture assays showed that CFM 4.17 NLPF improved combination sensitivity. Pharmacokinetic analysis showed that CFM 4.17 NLPF displayed higher AUCtot (2.9-fold) and Cmax (1.18-fold) as compared to free CFM 4.17. In contrast, the animal groups administered CFM 4.17 NLPF showed a 4.73-fold (in half-life) and a 3.07-fold increase (in MRT) when compared to equivalent dosed suspension. CONCLUSION We have successfully formulated CFM 4.17 NLPFs by robust RSM design approach displaying improved response through sensitizing cells to Osimertinib treatment as well as improving the oral bioavailability of CFM 4.17.
Collapse
Affiliation(s)
- Nagavendra Kommineni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| | - Ebony Nottingham
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| | - Arvind Bagde
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| | - Nilkumar Patel
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| | - Arun K Rishi
- John D. Dingell VA Medical Center, Karmanos Cancer Institute, Department of Oncology, Wayne State University, Detroit, MI 48201, United States
| | - Satyanarayan R S Dev
- Biological Systems Engineering, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32310, United States.
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States.
| |
Collapse
|
14
|
Yadav E, Khatana AK, Sebastian S, Gupta MK. DAP derived fatty acid amide organogelators as novel carrier for drug incorporation and pH-responsive release. NEW J CHEM 2021. [DOI: 10.1039/d0nj04611f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Low-molecular mass fatty acid amide gelators were synthesized using 2,6-diaminopyridine as a linker and alkyl chains of varying lengths. The prepared organogel-elusions are able to trap and release ibuprofen molecule without changing its structure and activity.
Collapse
Affiliation(s)
- Eqvinshi Yadav
- Department of Chemistry
- School of Basic Sciences
- Central University of Haryana
- Haryana
- India
| | - Anil Kumar Khatana
- Department of Chemistry
- School of Basic Sciences
- Central University of Haryana
- Haryana
- India
| | - Sharol Sebastian
- Department of Chemistry
- School of Basic Sciences
- Central University of Haryana
- Haryana
- India
| | - Manoj K. Gupta
- Department of Chemistry
- School of Basic Sciences
- Central University of Haryana
- Haryana
- India
| |
Collapse
|
15
|
Vishnevetskii DV, Mekhtiev AR, Perevozova TV, Averkin DV, Ivanova AI, Khizhnyak SD, Pakhomov PM. L-Cysteine/AgNO 2 low molecular weight gelators: self-assembly and suppression of MCF-7 breast cancer cells. SOFT MATTER 2020; 16:9669-9673. [PMID: 33084726 DOI: 10.1039/d0sm01431a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report a new supramolecular hydrogel based on simple amino acids and silver salt compounds with low molecular weights. The in situ formation of silver nanoparticles during the self-assembly process endows the hydrogel with high cytotoxicity towards adenocarcinoma breast cells but no toxic effects towards embryonic fibroblasts.
Collapse
Affiliation(s)
- Dmitry V Vishnevetskii
- Department of Physical Chemistry and Applied Physics, Tver State University, Tver, 170100, Russia.
| | | | | | | | | | | | | |
Collapse
|
16
|
Macoon R, Robey M, Chauhan A. In vitro release of hydrophobic drugs by oleogel rods with biocompatible gelators. Eur J Pharm Sci 2020; 152:105413. [DOI: 10.1016/j.ejps.2020.105413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/08/2020] [Accepted: 06/04/2020] [Indexed: 12/26/2022]
|
17
|
Rahnfeld L, Luciani P. Injectable Lipid-Based Depot Formulations: Where Do We Stand? Pharmaceutics 2020; 12:E567. [PMID: 32575406 PMCID: PMC7356974 DOI: 10.3390/pharmaceutics12060567] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 01/18/2023] Open
Abstract
The remarkable number of new molecular entities approved per year as parenteral drugs, such as biologics and complex active pharmaceutical ingredients, calls for innovative and tunable drug delivery systems. Besides making these classes of drugs available in the body, injectable depot formulations offer the unique advantage in the parenteral world of reducing the number of required injections, thus increasing effectiveness as well as patient compliance. To date, a plethora of excipients has been proposed to formulate depot systems, and among those, lipids stand out due to their unique biocompatibility properties and safety profile. Looking at the several long-acting drug delivery systems based on lipids designed so far, a legitimate question may arise: How far away are we from an ideal depot formulation? Here, we review sustained release lipid-based platforms developed in the last 5 years, namely oil-based solutions, liposomal systems, in situ forming systems, solid particles, and implants, and we critically discuss the requirements for an ideal depot formulation with respect to the used excipients, biocompatibility, and the challenges presented by the manufacturing process. Finally, we delve into lights and shadows originating from the current setups of in vitro release assays developed with the aim of assessing the translational potential of depot injectables.
Collapse
Affiliation(s)
| | - Paola Luciani
- Pharmaceutical Technology Research Group, Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland;
| |
Collapse
|
18
|
Dai M, Bai L, Zhang H, Ma Q, Luo R, Lei F, Fei Q, He N. A novel flunarizine hydrochloride-loaded organogel for intraocular drug delivery in situ: Design, physicochemical characteristics and inspection. Int J Pharm 2020; 576:119027. [PMID: 31953090 DOI: 10.1016/j.ijpharm.2020.119027] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 12/01/2022]
Abstract
We developed a safe and efficacious drug delivery system for treatment of brain diseases. A novel in-situ gel system was prepared using soybean oil, stearic acid and N-methyl-2-pyrrolidinone (NMP) (10:1:3, v/w/v). This system had low viscosity as a sol in vitro and turned into a solid or semi-solid gel in situ after administration. The poorly water-soluble drug flunarizine hydrochloride (FNZ) was incorporated into this "organogel" system. Organogel-FNZ was characterized by light microscopy, differential scanning calorimetry (DSC) and rheology. Drug release in vitro was investigated. The initial "burst" effect did not occur in organogel-FNZ, which is different from other gels formed in situ. Pharmacokinetic studies were undertaken in rats using gel administration (14 mg kg-1), intravenous administration (5 mg kg-1) and administration using drops (14 mg kg-1). Organogel-FNZ could reduce the clearance rate and prolong the duration of action, in the plasma and brain tissues of rats. The peak serum concentration, area under the curve and absolute bioavailability of the organogel-FNZ group were higher than those of the intraocular- drops group. Organogel-FNZ is a promising drug-delivery system for treatment of brain diseases by intraocular administration.
Collapse
Affiliation(s)
- Manman Dai
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Luyu Bai
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Huimin Zhang
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Qun Ma
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Rui Luo
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Fang Lei
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Qingsong Fei
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China
| | - Ning He
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China; Institute of Pharmaceutics, Anhui Academy of Chinese Medical Sciences, Hefei 230012, People's Republic of China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Province, Hefei 230012, People's Republic of China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, People's Republic of China.
| |
Collapse
|