1
|
Iaiza A, Mazzanti G, Goeman F, Cesaro B, Cortile C, Corleone G, Tito C, Liccardo F, De Angelis L, Petrozza V, Masciarelli S, Blandino G, Fanciulli M, Fatica A, Fontemaggi G, Fazi F. WTAP and m 6A-modified circRNAs modulation during stress response in acute myeloid leukemia progenitor cells. Cell Mol Life Sci 2024; 81:276. [PMID: 38909325 PMCID: PMC11335200 DOI: 10.1007/s00018-024-05299-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 06/24/2024]
Abstract
N6-methyladenosine (m6A) is one of the most prevalent and conserved RNA modifications. It controls several biological processes, including the biogenesis and function of circular RNAs (circRNAs), which are a class of covalently closed-single stranded RNAs. Several studies have revealed that proteotoxic stress response induction could be a relevant anticancer therapy in Acute Myeloid Leukemia (AML). Furthermore, a strong molecular interaction between the m6A mRNA modification factors and the suppression of the proteotoxic stress response has emerged. Since the proteasome inhibition leading to the imbalance in protein homeostasis is strictly linked to the stress response induction, we investigated the role of Bortezomib (Btz) on m6A regulation and in particular its impact on the modulation of m6A-modified circRNAs expression. Here, we show that treating AML cells with Btz downregulated the expression of the m6A regulator WTAP at translational level, mainly because of increased oxidative stress. Indeed, Btz treatment promoted oxidative stress, with ROS generation and HMOX-1 activation and administration of the reducing agent N-acetylcysteine restored WTAP expression. Additionally, we identified m6A-modified circRNAs modulated by Btz treatment, including circHIPK3, which is implicated in protein folding and oxidative stress regulation. These results highlight the intricate molecular networks involved in oxidative and ER stress induction in AML cells following proteotoxic stress response, laying the groundwork for future therapeutic strategies targeting these pathways.
Collapse
MESH Headings
- Humans
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Adenosine/pharmacology
- Oxidative Stress/drug effects
- Bortezomib/pharmacology
- Cell Line, Tumor
- Reactive Oxygen Species/metabolism
- RNA Splicing Factors/metabolism
- RNA Splicing Factors/genetics
- Cell Cycle Proteins/metabolism
- Cell Cycle Proteins/genetics
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/pathology
- Heme Oxygenase-1/metabolism
- Heme Oxygenase-1/genetics
- Protein Serine-Threonine Kinases
- Intracellular Signaling Peptides and Proteins
Collapse
Affiliation(s)
- Alessia Iaiza
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
| | - Gilla Mazzanti
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Frauke Goeman
- SAFU, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Bianca Cesaro
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
| | - Clelia Cortile
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
- SAFU, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giacomo Corleone
- SAFU, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Claudia Tito
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Francesca Liccardo
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Luciana De Angelis
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Vincenzo Petrozza
- Department of Medico-Surgical Science and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Silvia Masciarelli
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Maurizio Fanciulli
- SAFU, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Alessandro Fatica
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy.
| | - Giulia Fontemaggi
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Francesco Fazi
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161, Rome, Italy.
| |
Collapse
|
2
|
Qadir J, Wen SY, Yuan H, Yang BB. CircRNAs regulate the crosstalk between inflammation and tumorigenesis: The bilateral association and molecular mechanisms. Mol Ther 2023; 31:1514-1532. [PMID: 36518080 PMCID: PMC10278049 DOI: 10.1016/j.ymthe.2022.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/16/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Inflammation, a hallmark of cancer, has been associated with tumor progression, transition into malignant phenotype and efficacy of the chemotherapeutic agents in cancer. Chronic inflammation provides a favorable environment for tumorigenesis by inducing immunosuppression, whereas acute inflammation prompts tumor suppression by generating anti-tumor immune responses. Inflammatory factors derived from interstitial cells or tumor cells can stimulate cell proliferation and survival by modulating oncogenes and/or tumor suppressors. Recently, a new class of RNAs, i.e., circular RNAs (circRNAs), has been implicated in inflammatory diseases. Although there are reports on circRNAs imparting functions in inflammatory insults, whether these circularized transcripts hold the potential to regulate inflammation-induced cancer or tumor-related inflammation, and modulate the interactions between tumor microenvironment (TME) and the inflammatory stromal/immune cells, awaits further elucidation. Contextually, the current review describes the molecular association between inflammation and cancer, and spotlights the regulatory mechanisms by which circRNAs can moderate TME in response to inflammatory signals/triggers. We also present comprehensive information about the immune cell(s)-specific expression and functions of the circRNAs in TME, modulation of inflammatory signaling pathways to drive tumorigenesis, and their plausible roles in inflammasomes and tumor development. Moreover, the therapeutic potential of these circRNAs in harnessing inflammatory responses in cancer is also discussed.
Collapse
Affiliation(s)
- Javeria Qadir
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Shuo-Yang Wen
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Hui Yuan
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Burton B Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Ouyang X, He Z, Fang H, Zhang H, Yin Q, Hu L, Gao F, Yin H, Hao T, Hou Y, Wu Q, Deng J, Xu J, Wang Y, Chen C. A protein encoded by circular ZNF609 RNA induces acute kidney injury by activating the AKT/mTOR-autophagy pathway. Mol Ther 2023; 31:1722-1738. [PMID: 36110046 PMCID: PMC10277836 DOI: 10.1016/j.ymthe.2022.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/28/2022] [Accepted: 09/12/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy plays a crucial role in the development and progression of ischemic acute kidney injury (AKI). However, the function and mechanism of circular RNAs (circRNAs) in the regulation of autophagy in ischemic AKI remain unexplored. Herein, we find that circ-ZNF609, originating from the ZNF609 locus, is highly expressed in the kidney after ischemia/reperfusion injury, and urinary circ-ZNF609 is a moderate predictor for AKI in heart disease patients. Overexpression of circ-ZNF609 can activate AKT3/mTOR signaling and induce autophagy flux impairment and cell apoptosis while inhibiting proliferation in HK-2 cells, which is blocked by silencing circ-ZNF609. Mechanistically, circ-ZNF609 encodes a functional protein consisting of 250 amino acids (aa), termed ZNF609-250aa, the overexpression of which can activate AKT3/mTOR signaling and induce autophagy flux impairment and cell apoptosis in HK-2 cells in vitro and in AKI kidneys in vivo. The blockade of AKT and mTOR signaling with pharmacological inhibitors is capable of reversing ZNF609-250aa-induced autophagy flux impairment and cell apoptosis in HK-2 cells. The present study demonstrates that highly expressed circ-ZNF609-encoded ZNF609-250aa induces cell apoptosis and AKI by impairing the autophagy flux via an AKT/mTOR-dependent mechanism. These findings imply that targeting circ-ZNF609 may be a novel therapy for ischemic AKI.
Collapse
Affiliation(s)
- Xin Ouyang
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 96 Dongchuan Road, Guangzhou 510080, Guangdong, China
| | - Zhimei He
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou 510080, Guangdong, China
| | - Heng Fang
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 96 Dongchuan Road, Guangzhou 510080, Guangdong, China; Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou 510080, Guangdong, China
| | - Huidan Zhang
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 96 Dongchuan Road, Guangzhou 510080, Guangdong, China; Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou 510080, Guangdong, China
| | - Qi Yin
- CookGene Biosciences Center, Guangzhou 510320, Guangdong, China; Forevergen Biosciences Center, Guangzhou 510320, Guangdong, China
| | - Linhui Hu
- Department of Critical Care Medicine, Maoming People's Hospital, Maoming 525000, Guangdong, China; Department of Scientific Research Center, Maoming People's Hospital, Maoming 525000, Guangdong, China
| | - Fei Gao
- CookGene Biosciences Center, Guangzhou 510320, Guangdong, China; Forevergen Biosciences Center, Guangzhou 510320, Guangdong, China
| | - Hao Yin
- CookGene Biosciences Center, Guangzhou 510320, Guangdong, China; Forevergen Biosciences Center, Guangzhou 510320, Guangdong, China
| | - Taofang Hao
- CookGene Biosciences Center, Guangzhou 510320, Guangdong, China; Forevergen Biosciences Center, Guangzhou 510320, Guangdong, China
| | - Yating Hou
- Department of Critical Care Medicine, Maoming People's Hospital, Maoming 525000, Guangdong, China
| | - Qingrui Wu
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 96 Dongchuan Road, Guangzhou 510080, Guangdong, China; Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou 510080, Guangdong, China
| | - Jia Deng
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 96 Dongchuan Road, Guangzhou 510080, Guangdong, China
| | - Jing Xu
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 96 Dongchuan Road, Guangzhou 510080, Guangdong, China
| | - Yirong Wang
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 96 Dongchuan Road, Guangzhou 510080, Guangdong, China; Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou 510080, Guangdong, China
| | - Chunbo Chen
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 96 Dongchuan Road, Guangzhou 510080, Guangdong, China; Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou 510080, Guangdong, China; Department of Critical Care Medicine, Maoming People's Hospital, Maoming 525000, Guangdong, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China.
| |
Collapse
|
4
|
Luo J, Wang S, Zhang L, Zhang L, Wu S, Zheng W, Huang X, Ye X, Wu M. Research advance and clinical implication of circZNF609 in human diseases. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2118076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Jieyi Luo
- Department of Endocrinology, The First Clinical Medical College, Guangdong Medical University, Zhanjiang, Guangdong, PR China
- Department of Histology and Embryology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Shengchun Wang
- Department of Pathology, School of Basic Medicine, Guangdong Medical University, Dongguan, Guangdong, PR China
| | - Lu Zhang
- Department of Endocrinology, The First Clinical Medical College, Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Lu Zhang
- Department of Endocrinology, The First Clinical Medical College, Guangdong Medical University, Zhanjiang, Guangdong, PR China
- Department of Histology and Embryology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Shanshan Wu
- Department of Biology, School of Basic Medical Science, Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Weirang Zheng
- Department of Endocrinology, The First Clinical Medical College, Guangdong Medical University, Zhanjiang, Guangdong, PR China
- Department of Histology and Embryology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Xueshan Huang
- Department of Endocrinology, The First Clinical Medical College, Guangdong Medical University, Zhanjiang, Guangdong, PR China
- Department of Histology and Embryology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Xiaoxia Ye
- Department of Histology and Embryology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Minhua Wu
- Department of Histology and Embryology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong, PR China
| |
Collapse
|
5
|
Wang S, Wu J, Wang Z, Gong Z, Liu Y, Wang Z. Emerging Roles of Circ-ZNF609 in Multiple Human Diseases. Front Genet 2022; 13:837343. [PMID: 35938040 PMCID: PMC9353708 DOI: 10.3389/fgene.2022.837343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/03/2022] [Indexed: 12/11/2022] Open
Abstract
Circular RNAs (circRNAs) are a special type of endogenous RNAs with extensive roles in multiple human diseases. They are formed by back-splicing of partial sequences of the parental precursor mRNAs. Unlike linear RNAs, their covalently closed loop structure without a 5′ cap and a 3′ polyadenylated tail confers on them high stability and they are difficult to be digested by RNase R. Increasing evidence has proved that aberrant expressions of many circRNAs are detected and that circRNAs exert essential biological functions in disease development and progression via acting as a molecular sponge of microRNA, interacting with proteins as decoys or scaffolds, or self-encoding small peptides. Circular RNA zinc finger protein 609 (circ-ZNF609) originates from exon2 of ZNF609, which is located at chromosome 15q22.31, and it has recently been proved that it can translate into a protein. Being aberrantly upregulated in various diseases, it could promote malignant progression of human tumors, as well as tumor cell proliferation, migration, and invasion. Here in this review, we concluded the biological functions and potential mechanisms of circ-ZNF609 in multiple diseases, which could be further explored as a targetable molecule in future accurate diagnosis and prognosis.
Collapse
Affiliation(s)
| | | | | | | | - Yiyang Liu
- *Correspondence: Yiyang Liu, ; Zengjun Wang,
| | | |
Collapse
|
6
|
Xiao J, Joseph S, Xia M, Teng F, Chen X, Huang R, Zhai L, Deng W. Circular RNAs Acting as miRNAs’ Sponges and Their Roles in Stem Cells. J Clin Med 2022; 11:jcm11102909. [PMID: 35629034 PMCID: PMC9145679 DOI: 10.3390/jcm11102909] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 12/04/2022] Open
Abstract
Circular RNAs (circRNAs), a novel type of endogenous RNAs, have become a subject of intensive research. It has been found that circRNAs are important players in cell differentiation and tissue homeostasis, as well as disease development. Moreover, the expression of circRNAs is usually not correlated with their parental gene expression, indicating that they are not only a steady-state by-product of mRNA splicing but a product of variable splicing under novel regulation. Sequence conservation analysis has also demonstrated that circRNAs have important non-coding functions. CircRNAs exist as a covalently closed loop form in mammalian cells, where they regulate cellular transcription and translation processes. CircRNAs are built from pre-messenger RNAs, and their biogenesis involves back-splicing, which is catalyzed by spliceosomes. The splicing reaction gives rise to three different types of intronic, exotic and exon–intron circular RNAs. Due to higher nuclease stability and longer half lives in cells, circRNAs are more stable than linear RNAs and have enormous clinical advantage for use as diagnostic and therapeutic biomarkers for disease. In recent years, it has been reported that circRNAs in stem cells play a crucial role in stem cell function. In this article, we reviewed the general feature of circRNAs and the distinct roles of circRNAs in stem cell biology, including regulation of stem cell self-renewal and differentiation. CircRNAs have shown unique expression profiles during differentiation of stem cells and could serve as promising biomarkers of these cells. As circRNAs play pivotal roles in stem cell regulation as well as the development and progression of various diseases, we also discuss opportunities and challenges of circRNA-based treatment strategies in future effective therapies for promising clinical applications.
Collapse
Affiliation(s)
- Juan Xiao
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China; (J.X.); (S.J.); (M.X.); (F.T.); (X.C.); (R.H.)
| | - Shija Joseph
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China; (J.X.); (S.J.); (M.X.); (F.T.); (X.C.); (R.H.)
| | - Mengwei Xia
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China; (J.X.); (S.J.); (M.X.); (F.T.); (X.C.); (R.H.)
| | - Feng Teng
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China; (J.X.); (S.J.); (M.X.); (F.T.); (X.C.); (R.H.)
| | - Xuejiao Chen
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China; (J.X.); (S.J.); (M.X.); (F.T.); (X.C.); (R.H.)
| | - Rufeng Huang
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China; (J.X.); (S.J.); (M.X.); (F.T.); (X.C.); (R.H.)
| | - Lihong Zhai
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang 441053, China; (J.X.); (S.J.); (M.X.); (F.T.); (X.C.); (R.H.)
- Correspondence: (L.Z.); (W.D.)
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 510060, China
- Jiangxi Deshang Pharmaceutical Co., Ltd., Zhangshu 336000, China
- Correspondence: (L.Z.); (W.D.)
| |
Collapse
|
7
|
Zhang Y, Chen Y, Wan Y, Zhao Y, Wen Q, Tang X, Shen J, Wu X, Li M, Li X, Li J, Li W, Xiao Z, Du F. Circular RNAs in the Regulation of Oxidative Stress. Front Pharmacol 2021; 12:697903. [PMID: 34385919 PMCID: PMC8353126 DOI: 10.3389/fphar.2021.697903] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/13/2021] [Indexed: 12/29/2022] Open
Abstract
Oxidative stress caused by an imbalance between the production and elimination of reactive metabolites and free radicals can lead to the development of a variety of diseases. Over the past years, with the development of science and technology, circular RNA (circRNA) has been found to be closely associated with oxidative stress, which plays an important role in the process of oxidative stress. Currently, the understanding of circRNAs in the mechanism of oxidative stress is limited. In this review, we described the relationship between oxidative stress and circRNAs, the circRNAs related to oxidative stress, and the role of circRNAs in promoting or inhibiting the occurrence and development of diseases associated with the oxidative stress system.
Collapse
Affiliation(s)
- Yao Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yue Wan
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Qinglian Wen
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaolong Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Xiang Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jing Li
- Department of Oncology and Hematology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| |
Collapse
|
8
|
Circular RNAs: Novel Players in the Oxidative Stress-Mediated Pathologies, Biomarkers, and Therapeutic Targets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6634601. [PMID: 34257814 PMCID: PMC8245247 DOI: 10.1155/2021/6634601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/24/2021] [Indexed: 12/29/2022]
Abstract
Oxidative stress (OxS) is a wildly described cause of damage to macromolecules, resulting in abnormal physiological conditions. In recent years, a few studies have shown that oxidation/antioxidation imbalance plays a significant role in developing diseases involving different systems and organs. However, the research on the circular RNA (circRNA) roles in OxS is still in its very infancy. Therefore, we hope to provide a comprehensive overview of the recent research that explored the function of circRNAs associated with OxS and its role in the pathogenesis of different diseases that affect different body systems like the nervous system, cardiovascular system, kidneys, and lungs. It provides the possibilities of using these circRNAs as superior diagnostic and therapeutic options for OxS associated with these disease conditions.
Collapse
|
9
|
Wang J, Lin Y, Jiang DH, Yang X, He XG. CircRNA ZNF609 promotes angiogenesis in nasopharyngeal carcinoma by regulating miR-145/STMN1 axis. Kaohsiung J Med Sci 2021; 37:686-698. [PMID: 33943007 DOI: 10.1002/kjm2.12381] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/03/2021] [Accepted: 03/02/2021] [Indexed: 12/29/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is the most common type of human malignant tumor in the head and neck, and tumor angiogenesis is essential for its development. Here, we showed that the circRNA ZNF609/microRNA (miR)-145/Stathmin 1 (STMN1) axis regulated angiogenesis in NPC.Circ-ZNF609, miR-145, and STMN1 expression in NPC cells and NPC samples were examined using qRT-PCR. The protein levels of STMN1, VEGFR1, and VEGFR2 were evaluated using western blotting. VEGF level was determined by ELISA. The proliferation of NPC cells and HUVECs was examined using a CCK-8 assay. Transwell assays and wound-healing assays were applied to assess the migration of NPC cells and HUVECs, respectively. Angiogenesis of HUVECs was evaluated by an angiogenesis assay. In addition, a dual-luciferase reporter assay and RNA pull-down assays were employed to verify the binding relationship between circ-ZNF609 and miR-145 as well as between miR-145 and STMN1. Here, we showed that circ-ZNF609 and STMN1 expression was increased, while miR-145 expression was decreased in NPC cells and NPC samples. Circ-ZNF609 may negatively regulate miR-145 expression by acting as a ceRNA. Silencing circ-ZNF609 suppressed cell proliferation, migration, and angiogenesis in NPC, while knockdown of miR-145 reversed these effects. In addition, we found that STMN1 was the downstream target of miR-145. MiR-145 overexpression suppressed cell proliferation, migration, and angiogenesis in NPC, which was abolished by STMN1 overexpression. Our data suggested that circ-ZNF609 promotes cell proliferation, migration, and angiogenesis in NPC by upregulating the expression of STMN1 by sponging miR-145 in NPC.
Collapse
Affiliation(s)
- Jin Wang
- The Second Department of Otolaryngology, Head and Neck Surgery of The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yan Lin
- The Second Department of Otolaryngology, Head and Neck Surgery of The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dong-Hui Jiang
- The Second Department of Otolaryngology, Head and Neck Surgery of The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xi Yang
- The Second Department of Otolaryngology, Head and Neck Surgery of The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiao-Guang He
- The Second Department of Otolaryngology, Head and Neck Surgery of The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
10
|
Emerging Clues of Regulatory Roles of Circular RNAs through Modulating Oxidative Stress: Focus on Neurological and Vascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6659908. [PMID: 33747348 PMCID: PMC7943259 DOI: 10.1155/2021/6659908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/06/2021] [Accepted: 02/18/2021] [Indexed: 12/11/2022]
Abstract
Circular RNAs (circRNAs) are novel noncoding RNAs that play regulatory roles in gene expression. Dysregulation of circRNAs is associated with the development and progression of several diseases, such as diabetes mellitus, nervous system diseases, cardiovascular diseases, and cancer. CircRNAs functionally participate in cell physiological activities through various molecular mechanisms. However, these molecular mechanisms are unclear. Oxidative stress is an essential factor in the pathogenesis of various diseases, including neurological diseases. Emerging roles of circRNAs have been identified in different systems in response to oxidative stress. In this review, we summarize the current understanding of circRNA biogenesis, properties, expression profiles, and the clues indicating the regulatory roles of circRNAs through oxidative stress in various systems, especially the nervous system.
Collapse
|
11
|
Role of microRNAs in Pressure Ulcer Immune Response, Pathogenesis, and Treatment. Int J Mol Sci 2020; 22:ijms22010064. [PMID: 33374656 PMCID: PMC7793489 DOI: 10.3390/ijms22010064] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Pressure ulcers are preventable, yet highly prevalent, chronic wounds that have significant patient morbidity and high healthcare costs. Like other chronic wounds, they are characterized by impaired wound healing due to dysregulated immune processes. This review will highlight key biochemical pathways in the pathogenesis of pressure injury and how this signaling leads to impaired wound healing. This review is the first to comprehensively describe the current literature on microRNA (miRNA, miR) regulation of pressure ulcer pathophysiology.
Collapse
|
12
|
Ji Z, Mao J, Chen S, Mao J. Antioxidant and anti-inflammatory activity of peptides from foxtail millet (Setaria italica) prolamins in HaCaT cells and RAW264.7 murine macrophages. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100636] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Inoue Y, Uchiyama A, Sekiguchi A, Yamazaki S, Fujiwara C, Yokoyama Y, Ogino S, Torii R, Hosoi M, Akai R, Iwawaki T, Ishikawa O, Motegi S. Protective effect of dimethyl fumarate for the development of pressure ulcers after cutaneous ischemia‐reperfusion injury. Wound Repair Regen 2020; 28:600-608. [DOI: 10.1111/wrr.12824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Yuta Inoue
- Department of Dermatology Gunma University Graduate School of Medicine Maebashi Japan
| | - Akihiko Uchiyama
- Department of Dermatology Gunma University Graduate School of Medicine Maebashi Japan
| | - Akiko Sekiguchi
- Department of Dermatology Gunma University Graduate School of Medicine Maebashi Japan
| | - Sahori Yamazaki
- Department of Dermatology Gunma University Graduate School of Medicine Maebashi Japan
| | - Chisako Fujiwara
- Department of Dermatology Gunma University Graduate School of Medicine Maebashi Japan
| | - Yoko Yokoyama
- Department of Dermatology Gunma University Graduate School of Medicine Maebashi Japan
| | - Sachiko Ogino
- Department of Dermatology Gunma University Graduate School of Medicine Maebashi Japan
| | - Ryoko Torii
- Department of Dermatology Gunma University Graduate School of Medicine Maebashi Japan
| | - Mari Hosoi
- Department of Dermatology Gunma University Graduate School of Medicine Maebashi Japan
| | - Ryoko Akai
- Division of Cell Medicine, Department of Life Science Medical Research Institute, Kanazawa Medical University Ishikawa Japan
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science Medical Research Institute, Kanazawa Medical University Ishikawa Japan
| | - Osamu Ishikawa
- Department of Dermatology Gunma University Graduate School of Medicine Maebashi Japan
| | - Sei‐ichiro Motegi
- Department of Dermatology Gunma University Graduate School of Medicine Maebashi Japan
| |
Collapse
|
14
|
Ashrafizadeh M, Ahmadi Z, Samarghandian S, Mohammadinejad R, Yaribeygi H, Sathyapalan T, Sahebkar A. MicroRNA-mediated regulation of Nrf2 signaling pathway: Implications in disease therapy and protection against oxidative stress. Life Sci 2020; 244:117329. [PMID: 31954747 DOI: 10.1016/j.lfs.2020.117329] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/12/2020] [Accepted: 01/15/2020] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRs) are small non-coding pieces of RNA that are involved in a variety of physiologic processes such as apoptosis, cell proliferation, cell differentiation, cell cycle and cell survival. These multifunctional nucleotides are also capable of preventing oxidative damages by modulating antioxidant defense systems in a variety of milieu, such as in diabetes. Although the exact molecular mechanisms by which miRs modulate the antioxidant defense elements are unclear, some evidence suggests that they may exert these effects via nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. This intracellular mechanism is crucial in the maintenance of the physiologic redox balance by regulating the expression and activity of various cellular antioxidative defense elements and thereby plays a pivotal role in the development of oxidative stress. Any impairment in the Nrf2 signaling pathway may result in oxidative damage-dependent complications such as various diabetic complications, neurological disorders and cancer. In the current review, we discuss the modulatory effects of miRs on the Nrf2 signaling pathway, which can potentially be novel therapeutic targets.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|