1
|
Li Z, Ma X, Yang Y, Wang Y, Zhu W, Deng X, Chen T, Gao C, Zhang Y, Yang W, Xing H, Ye X, Wu A, Zhang X. Crizotinib resistance reversal in ALK-positive lung cancer through zeolitic imidazolate framework-based mitochondrial damage. Acta Biomater 2024; 185:381-395. [PMID: 39067643 DOI: 10.1016/j.actbio.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Crizotinib (CRZ), one of anaplastic lymphoma kinase tyrosine kinase inhibitors (ALK-TKIs), has emerged as a frontline treatment for ALK-positive (ALK+) lung adenocarcinoma. However, the overexpression of P-glycoprotein (P-gp, a mitochondrial adenosine triphosphate (ATP)-dependent protein) in lung adenocarcinoma lesions causes multidrug resistance (MDR) and limits the efficacy of CRZ treatment. Herein, a mitochondria-targeting nanosystem, zeolitic imidazolate framework-90@indocyanine green (ZIF-90@ICG), was fabricated to intervene in mitochondria and overcome drug resistance. Due to the zinc ion (Zn2+) interference of ZIF-90 and the photodynamic therapy (PDT) of ICG, this nanosystem is well suited for damaging mitochondrial functions, thus downregulating the intracellular ATP level and inhibiting P-gp expression. In addition, systematic bioinformatics analysis revealed the upregulation of CD44 in CRZ-resistant cells. Therefore, hyaluronic acid (HA, a critical target ligand of CD44) was further modified on the surface of ZIF-90@ICG for active targeting. Overall, this ZIF-90@ICG nanosystem synergistically increased the intracellular accumulation of CRZ and reversed CRZ resistance to enhance its anticancer effect, which provides guidance for nanomedicine design to accurately target tumours and induce mitochondrial damage and represents a viable regimen for improving the prognosis of patients with ALK-TKIs resistance. STATEMENT OF SIGNIFICANCE: The original aim of our research was to combat multidrug resistance (MDR) in highly aggressive and lethal lymphoma kinase-positive (ALK+) lung adenocarcinoma. For this purpose, a cascade-targeted system was designed to overcome MDR, integrating lung adenocarcinoma-targeted hyaluronic acid (HA), mitochondrion-targeted zeolitic imidazolate framework-90 (ZIF-90), the clinically approved drug crizotinib (CRZ), and the fluorescence imaging agent/photosensitizer indocyanine green (ICG). Moreover, using a "two birds with one stone" strategy, ion interference and oxidative stress induced by ZIF-90 and photodynamic therapy (PDT), respectively, disrupt mitochondrial homeostasis, thus downregulating adenosine triphosphate (ATP) levels, inhibiting MDR-relevant P-glycoprotein (P-gp) expression and suppressing tumour metastasis. Overall, this research represents an attempt to implement the concept of MDR reversal and realize the trade-offs between MDR and therapeutic effectiveness.
Collapse
Affiliation(s)
- Zhouhua Li
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Xuehua Ma
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China.
| | - Yanqiang Yang
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yanan Wang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China
| | - Weihao Zhu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China
| | - Xiaoxia Deng
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China
| | - Tianxiang Chen
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Changyong Gao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Yongchang Zhang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Weichang Yang
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Hongquan Xing
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Xiaoqun Ye
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Zhejiang International Cooperation Base of Biomedical Materials Technology and Application Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China.
| | - Xinyi Zhang
- Department of Respiratory Diseases, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
2
|
Xue H, Ju Y, Ye X, Dai M, Tang C, Liu L. Construction of intelligent drug delivery system based on polysaccharide-derived polymer micelles: A review. Int J Biol Macromol 2024; 254:128048. [PMID: 37967605 DOI: 10.1016/j.ijbiomac.2023.128048] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Micelles are nanostructures developed via the spontaneous assembly of amphiphilic polymers in aqueous systems, which possess the advantages of high drug stability or active-ingredient solubilization, targeted transport, controlled release, high bioactivity, and stability. Polysaccharides have excellent water solubility, biocompatibility, and degradability, and can be modified to achieve a hydrophobic core to encapsulate hydrophobic drugs, improve drug biocompatibility, and achieve regulated delivery of the loaded drug. Micelles drug delivery systems based on polysaccharides and their derivatives show great potential in the biomedical field. This review discusses the principles of self-assembly of amphiphilic polymers and the formation of micelles; the preparation of amphiphilic polysaccharides is described in detail, and an overview of common polysaccharides and their modifications is provided. We focus on the review of strategies for encapsulating drugs in polysaccharide-derived polymer micelles (PDPMs) and building intelligent drug delivery systems. This review provides new research directions that will help promote future research and development of PDPMs in the field of drug carriers.
Collapse
Affiliation(s)
- Huaqian Xue
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China; School of Pharmacy, Ningxia Medical University, Ningxia 750004, China
| | - Yikun Ju
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China; The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xiuzhi Ye
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| |
Collapse
|
3
|
Zhang Z, Ding C, Sun T, Wang L, Chen C. Tumor Therapy Strategies Based on Microenvironment-Specific Responsive Nanomaterials. Adv Healthc Mater 2023; 12:e2300153. [PMID: 36933000 DOI: 10.1002/adhm.202300153] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/10/2023] [Indexed: 03/19/2023]
Abstract
The tumor microenvironment (TME) is a complex and variable region characterized by hypoxia, low pH, high redox status, overexpression of enzymes, and high-adenosine triphosphate concentrations. In recent years, with the continuous in-depth study of nanomaterials, more and more TME-specific response nanomaterials are used for tumor treatment. However, the complexity of the TME causes different types of responses with various strategies and mechanisms of action. Aiming to systematically demonstrate the recent advances in research on TME-responsive nanomaterials, this work summarizes the characteristics of TME and outlines the strategies of different TME responses. Representative reaction types are illustrated and their merits and demerits are analyzed. Finally, forward-looking views on TME-response strategies for nanomaterials are presented. It is envisaged that such emerging strategies for the treatment of cancer are expected to exhibit dramatic trans-clinical capabilities, demonstrating the extensive potential for the diagnosis and therapy of cancer.
Collapse
Affiliation(s)
- Zhaocong Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Chengwen Ding
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Tiedong Sun
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Chunxia Chen
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
4
|
Song P, Wang B, Pan Q, Jiang T, Chen X, Zhang M, Tao J, Zhao X. GE11-modified carboxymethyl chitosan micelles to deliver DOX·PD-L1 siRNA complex for combination of ICD and immune escape inhibition against tumor. Carbohydr Polym 2023; 312:120837. [PMID: 37059562 DOI: 10.1016/j.carbpol.2023.120837] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/03/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023]
Abstract
Programmed cell death-ligand 1 (PD-L1) small interfering RNA (siRNA) achieves tumor immunotherapy by restoring the immune response of T cells, but the efficacy of PD-1/PD-L1 monotherapy is relatively low. While immunogenic cell death (ICD) can improve the response of most tumors to anti-PD-L1 and enhance tumor immunotherapy. Herein, a targeting peptide GE11-functionalized dual-responsive carboxymethyl chitosan (CMCS) micelle (G-CMssOA) is developed for simultaneous delivery of PD-L1 siRNA and doxorubicin (DOX) in a complex form of DOX·PD-L1 siRNA (D&P). The complex-loaded micelles (G-CMssOA/D&P) have good physiological stability and pH/reduction responsiveness, and improve the intratumoral infiltration of CD4+ and CD8+ T cells, reduce Tregs (TGF-β), and increase the secretion of immune-stimulatory cytokine (TNF-α). The combination of DOX-induced ICD and PD-L1 siRNA-mediated immune escape inhibition significantly improves anti-tumor immune response and inhibits tumor growth. This complex delivery strategy provides a new approach for effectively delivering siRNA and enhancing anti-tumor immunotherapy.
Collapse
|
5
|
Almajidi YQ, Kadhim MM, Alsaikhan F, Turki Jalil A, Hassan Sayyid N, Alexis Ramírez-Coronel A, Hassan Jawhar Z, Gupta J, Nabavi N, Yu W, Ertas YN. Doxorubicin-loaded micelles in tumor cell-specific chemotherapy. ENVIRONMENTAL RESEARCH 2023; 227:115722. [PMID: 36948284 DOI: 10.1016/j.envres.2023.115722] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 05/08/2023]
Abstract
Nanomedicine is a field that combines biology and engineering to improve disease treatment, particularly in cancer therapy. One of the promising techniques utilized in this area is the use of micelles, which are nanoscale delivery systems that are known for their simple preparation, high biocompatibility, small particle size, and the ability to be functionalized. A commonly employed chemotherapy drug, Doxorubicin (DOX), is an effective inhibitor of topoisomerase II that prevents DNA replication in cancer cells. However, its efficacy is frequently limited by resistance resulting from various factors, including increased activity of drug efflux transporters, heightened oncogenic factors, and lack of targeted delivery. This review aims to highlight the potential of micelles as new nanocarriers for delivering DOX and to examine the challenges involved with employing chemotherapy to treat cancer. Micelles that respond to changes in pH, redox, and light are known as stimuli-responsive micelles, which can improve the targeted delivery of DOX and its cytotoxicity by facilitating its uptake in tumor cells. Additionally, micelles can be utilized to administer a combination of DOX and other drugs and genes to overcome drug resistance mechanisms and improve tumor suppression. Furthermore, micelles can be used in phototherapy, both photodynamic and photothermal, to promote cell death and increase DOX sensitivity in human cancers. Finally, the alteration of micelle surfaces with ligands can further enhance their targeted delivery for cancer suppression.
Collapse
Affiliation(s)
| | - Mustafa M Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit, 52001, Iraq; Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, 10022, Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group(GIEE), National University of Education, Ecuador
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Iraq; Clinical Biochemistry Department, College of Health Sciences, Hawler Medical University, Erbil, Iraq
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U.P, India
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Wei Yu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Türkiye; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Türkiye.
| |
Collapse
|
6
|
Song P, Lu Z, Jiang T, Han W, Chen X, Zhao X. Chitosan coated pH/redox-responsive hyaluronic acid micelles for enhanced tumor targeted co-delivery of doxorubicin and siPD-L1. Int J Biol Macromol 2022; 222:1078-1091. [DOI: 10.1016/j.ijbiomac.2022.09.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
|
7
|
Chaudhuri A, Ramesh K, Kumar DN, Dehari D, Singh S, Kumar D, Agrawal AK. Polymeric micelles: A novel drug delivery system for the treatment of breast cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
8
|
Curcio M, Vittorio O, Bell JL, Iemma F, Nicoletta FP, Cirillo G. Hyaluronic Acid within Self-Assembling Nanoparticles: Endless Possibilities for Targeted Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12162851. [PMID: 36014715 PMCID: PMC9413373 DOI: 10.3390/nano12162851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 05/27/2023]
Abstract
Self-assembling nanoparticles (SANPs) based on hyaluronic acid (HA) represent unique tools in cancer therapy because they combine the HA targeting activity towards cancer cells with the advantageous features of the self-assembling nanosystems, i.e., chemical versatility and ease of preparation and scalability. This review describes the key outcomes arising from the combination of HA and SANPs, focusing on nanomaterials where HA and/or HA-derivatives are inserted within the self-assembling nanostructure. We elucidate the different HA derivatization strategies proposed for this scope, as well as the preparation methods used for the fabrication of the delivery device. After showing the biological results in the employed in vivo and in vitro models, we discussed the pros and cons of each nanosystem, opening a discussion on which approach represents the most promising strategy for further investigation and effective therapeutic protocol development.
Collapse
Affiliation(s)
- Manuela Curcio
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| | - Orazio Vittorio
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sidney, NSW 2052, Australia
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, University of New South Wales, Kensington, NSW 2052, Australia
| | - Jessica Lilian Bell
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sidney, NSW 2052, Australia
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
| | - Francesca Iemma
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| |
Collapse
|