1
|
Jiang S, Ding Y, Zhao G, Ye S, Liu S, Yin Y, Li Z, Zou X, Xie D, You C, Guo X. Species-specific RNA barcoding technology for rapid and accurate identification of four types of influenza virus. BMC Genomics 2025; 26:409. [PMID: 40295995 PMCID: PMC12036255 DOI: 10.1186/s12864-025-11602-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 04/14/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND The influenza virus (IV) is responsible for seasonal flu epidemics. Constant mutation of the virus results in new strains and widespread reinfections across the globe, bringing great challenges to disease prevention and control. Research has demonstrated that barcoding technology efficiently and cost-effectively differentiates closely related species on a large scale. We screened and validated species-specific RNA barcode segments based on the genetic relationships of four types of IVs, facilitating their precise identification in high-throughput sequencing viral samples. RESULTS Through the analysis of single nucleotide polymorphism, population genetic characteristics, and phylogenetic relationships in the training set, 7 IVA type, 29 IVB type, 40 IVC type, and 5 IVD type barcode segments were selected. In the testing set, the nucleotide-level recall rate for all barcode segments reached 96.86%, the average nucleotide-level specificity was approximately 55.27%, the precision rate was 100%, and the false omission rate was 0%, demonstrating high accuracy, specificity, and generalization capabilities for species identification. Ultimately, all four types of IVs were visualized in a combination of one-dimensional and two-dimensional codes and stored in an online database named Influenza Virus Barcode Database (FluBarDB, http://virusbarcodedatabase.top/database/index.html ). CONCLUSION This study validates the effective application of RNA barcoding technology in the detection of IVs and establishes criteria and procedures for selecting species-specific molecular markers. These advancements enhance the understanding of the genetic and epidemiological characteristics of IVs and enable rapid responses to viral genetic mutations.
Collapse
Affiliation(s)
- Shuai Jiang
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Yunyun Ding
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Gaili Zhao
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Shunxing Ye
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Shucan Liu
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Yan Yin
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Zeqi Li
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Xiaoxiao Zou
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Daolong Xie
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Changqiao You
- College of Biology, Hunan University, Changsha, Hunan, 410082, China.
| | - Xinhong Guo
- College of Biology, Hunan University, Changsha, Hunan, 410082, China.
| |
Collapse
|
3
|
Zhang M, Zeng Z, Chen X, Wang G, Cai X, Hu Z, Gu M, Hu S, Liu X, Wang X, Peng D, Hu J, Liu X. Phosphorylation of PA at serine 225 enhances viral fitness of the highly pathogenic H5N1 avian influenza virus in mice. Vet Microbiol 2025; 302:110400. [PMID: 39847871 DOI: 10.1016/j.vetmic.2025.110400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Currently, there is increasing spillover of highly pathogenic H5N1 avian influenza virus (AIV) to mammals, raising a concern of pandemic threat about this virus. Although the function of PA protein of the influenza virus is well understood, the understanding of how phosphorylation regulates this protein and influenza viral life cycle is still limited. We previously identified PA S225 as the phosphorylation site in the highly pathogenic H5N1 AIV. In this study, we investigated the role of phosphorylation in regulating PA function and viral fitness through dephosphorylation (PA S225A) or continuous phosphorylation (PA S225E)-mimetic mutation of PA S225. Structure analysis revealed that PA S225A or PA S225E mutation had no obvious effect on the structure of PA protein. Replication assay in vitro showed that PA S225A phosphorylation-ablative mutation significantly inhibited virus replication both in mammalian and avian-derived cells, while PA S225E enhanced viral replication in these cells. Correspondingly, PA S225A dephosphorylation significantly attenuated viral replication and virulence in mice, while PA S225E enhanced these aspects in mice. Mechanistically, PA S225A mutation significantly decreased viral polymerase activity, disabled viral ribonucleoprotein complex (vRNP) assembly and attenuated PA nuclear accumulation. Altogether, our study directly suggested that phosphorylation of PA protein at site S225 enhances viral fitness of the highly pathogenic H5N1 virus in mammals by assuring effective vRNP activity, providing a framework for further study of phosphorylation events in influenza virus life cycle.
Collapse
Affiliation(s)
- Manyu Zhang
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zixiong Zeng
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xia Chen
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Guoqing Wang
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinxin Cai
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Min Gu
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shunlin Hu
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaowen Liu
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoquan Wang
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Daxin Peng
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiao Hu
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xiufan Liu
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
4
|
Bian S, Zhang R, Nie J, Zhu M, Xie Z, Liao C, Wang Q. Progress with polo-like kinase (PLK) inhibitors: a patent review (2018-present). Expert Opin Ther Pat 2024; 34:789-806. [PMID: 38994687 DOI: 10.1080/13543776.2024.2379924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
INTRODUCTION Polo-like kinases (PLKs) have five isoforms, all of which play crucial roles in cell cycle and cell proliferation, offering opportunities for drug design and treatment of cancers and other related diseases. Notably, PLK1 and PLK4 have been extensively investigated as cancer drug targets. One distinctive feature of PLKs is the presence of a unique polo-box domain (PBD), which regulates kinase activity and subcellular localization. This provides possibilities for specifically targeting PLKs. AREA COVERED This article provides an overview of the roles of PLKs in various cancers and related diseases, as well as the drug development involving PLKs, with a particular focus on PLK1 and PLK4. It summarizes the PLK1 and PLK4 inhibitors that have been disclosed in patents or literature (from 2018 - present), which were sourced from SciFinder and WIPO database. EXPERT OPINION After two decades of drug development on PLKs, several drugs progressed into clinical trials for the treatment of many cancers; however, none of them has been approved yet. Further elucidating the mechanisms of PLKs and identifying and developing highly selective ATP-competitive inhibitors, highly potent drug-like PBD inhibitors, degraders, etc. may provide new opportunities for cancer therapy and the treatment for several nononcologic diseases. PLKs inhibition-based combination therapies can be another helpful strategy.
Collapse
Affiliation(s)
- Shirong Bian
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Ru Zhang
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Jianyu Nie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Mingxing Zhu
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Zhouling Xie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Chenzhong Liao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Qin Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|