1
|
Uchitel J, Kantor B, Smith EC, Mikati MA. Viral-Mediated Gene Replacement Therapy in the Developing Central Nervous System: Current Status and Future Directions. Pediatr Neurol 2020; 110:5-19. [PMID: 32684374 DOI: 10.1016/j.pediatrneurol.2020.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/17/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022]
Abstract
The past few years have witnessed rapid developments in viral-mediated gene replacement therapy for pediatric central nervous system neurogenetic disorders. Here, we provide pediatric neurologists with an up-to-date, comprehensive overview of these developments and note emerging trends for future research. This review presents the different types of viral vectors used in viral-mediated gene replacement therapy; the fundamental properties of viral-mediated gene replacement therapy; the challenges associated with the use of this therapy in the central nervous system; the pathway for therapy development, from translational basic science studies to clinical trials; and an overview of the therapies that have reached clinical trials in patients. Current viral platforms under investigation include adenovirus vectors, adeno-associated viral vectors, lentiviral/retroviral vectors, and herpes simplex virus type 1 vectors. This review also presents an in-depth analysis of numerous studies that investigated these viral platforms in cultured cells and in transgenic animal models for pediatric neurogenetic disorders. Viral vectors have been applied to clinical trials for many different pediatric neurogenetic disorders, including Canavan disease, metachromatic leukodystrophy, neuronal ceroid lipofuscinosis, mucopolysaccharidosis III, spinal muscular atrophy, and aromatic l-amino acid decarboxylase deficiency. Of these diseases, only spinal muscular atrophy has a viral-mediated gene replacement therapy approved for marketing. Despite significant progress in therapy development, many challenges remain. Surmounting these challenges is critical to advancing the current status of viral-mediated gene replacement therapy for pediatric central nervous system neurogenetic disorders.
Collapse
Affiliation(s)
- Julie Uchitel
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, North Carolina
| | - Boris Kantor
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina
| | - Edward C Smith
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, North Carolina
| | - Mohamad A Mikati
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, North Carolina; Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina.
| |
Collapse
|
2
|
Saito S, Ohno SI, Harada Y, Oikawa K, Fujita K, Mineo S, Gondo A, Kanno Y, Kuroda M. rAAV6-mediated miR-29b delivery suppresses renal fibrosis. Clin Exp Nephrol 2019; 23:1345-1356. [PMID: 31482255 DOI: 10.1007/s10157-019-01783-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 08/20/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Previous studies showed that microRNA-29b (miR-29b) inhibits renal fibrosis. Therefore, miR-29b replacement therapy represents a promising approach for treating renal fibrosis. However, an efficient method of kidney-targeted miRNA delivery has yet to be established. Recombinant adeno-associated virus (rAAV) vectors have great potential for clinical application. For kidney-targeted gene delivery, the most suitable AAV serotype has yet to be established. Here, we identified the most suitable AAV serotype for kidney-targeted gene delivery and determined that AAV-mediated miR-29b delivery can suppress renal fibrosis in vivo. METHOD To determine which AAV serotype is suitable for kidney cells, GFP-positive cells were identified by flow cytometry after the infection of rAAV serotype 1-9 vectors containing the EGFP gene. Next, we injected rAAV vectors into the renal pelvis to determine transduction efficiency in vivo. GFP expression was measured seven days after injecting rAAV serotype 1-9 vectors carrying the EGFP gene. Finally, we investigated whether rAAV6-mediated miR-29b delivery can suppress renal fibrosis in UUO mouse model. RESULTS We found that rAAV6 vector is the most suitable for targeting kidney cells regardless of animal species in vitro and rAAV6 is the most suitable vector for kidney-targeted in vivo gene delivery in mice. Intra-renal pelvic injection of rAAV vectors can transduce genes into kidney TECs. Furthermore, rAAV6-mediated miR-29b delivery attenuated renal fibrosis in UUO model by suppressing Snail1 expression. CONCLUSION Our study has revealed that rAAV6 is the most suitable serotype for kidney-targeted gene delivery and rAAV6-mediated miR-29b delivery into kidney TECs can suppress established renal fibrosis.
Collapse
Affiliation(s)
- Suguru Saito
- Department of Nephrology, Tokyo Medical University, Tokyo, Japan
| | - Shin-Ichiro Ohno
- Deparatment of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjyuku, Shinjyuku-ku, Tokyo, 160-8402, Japan.
| | - Yuichirou Harada
- Deparatment of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjyuku, Shinjyuku-ku, Tokyo, 160-8402, Japan
| | - Keiki Oikawa
- Deparatment of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjyuku, Shinjyuku-ku, Tokyo, 160-8402, Japan
| | - Koji Fujita
- Deparatment of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjyuku, Shinjyuku-ku, Tokyo, 160-8402, Japan
| | - Shouichirou Mineo
- Deparatment of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjyuku, Shinjyuku-ku, Tokyo, 160-8402, Japan
| | - Asako Gondo
- Department of Nephrology, Tokyo Medical University, Tokyo, Japan
| | - Yoshihiko Kanno
- Department of Nephrology, Tokyo Medical University, Tokyo, Japan
| | - Masahiko Kuroda
- Deparatment of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjyuku, Shinjyuku-ku, Tokyo, 160-8402, Japan
| |
Collapse
|
3
|
Dombrowski T, Rankovic V, Moser T. Toward the Optical Cochlear Implant. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033225. [PMID: 30323016 DOI: 10.1101/cshperspect.a033225] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
When hearing fails, cochlear implants (CIs) provide open speech perception to most of the currently half a million CI users. CIs bypass the defective sensory organ and stimulate the auditory nerve electrically. The major bottleneck of current CIs is the poor coding of spectral information, which results from wide current spread from each electrode contact. As light can be more conveniently confined, optical stimulation of the auditory nerve presents a promising perspective for a fundamental advance of CIs. Moreover, given the improved frequency resolution of optical excitation and its versatility for arbitrary stimulation patterns the approach also bears potential for auditory research. Here, we review the current state of the art focusing on the emerging concept of optogenetic stimulation of the auditory pathway. Developing optogenetic stimulation for auditory research and future CIs requires efforts toward viral gene transfer to the neurons, design and characterization of appropriate optogenetic actuators, as well as engineering of multichannel optical implants.
Collapse
Affiliation(s)
- Tobias Dombrowski
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center, 37075 Göttingen, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, Ruhr University Bochum, St. Elisabeth Hospital, 44787 Bochum, Germany
| | - Vladan Rankovic
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center, 37075 Göttingen, Germany.,Auditory Neuroscience and Optogenetics Group, German Primate Center, 37077 Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center, 37075 Göttingen, Germany.,Auditory Neuroscience and Optogenetics Group, German Primate Center, 37077 Göttingen, Germany.,Auditory Neuroscience Group, Max-Planck-Institute for Experimental Medicine, 37075 Göttingen, Germany
| |
Collapse
|
4
|
Chen SH, Haam J, Walker M, Scappini E, Naughton J, Martin NP. Recombinant Viral Vectors as Neuroscience Tools. ACTA ACUST UNITED AC 2019; 87:e67. [PMID: 30901512 DOI: 10.1002/cpns.67] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recombinant viruses are highly efficient vehicles for in vivo gene delivery. Viral vectors expand the neurobiology toolbox to include direct and rapid anterograde, retrograde, and trans-synaptic delivery of tracers, sensors, and actuators to the mammalian brain. Each viral type offers unique advantages and limitations. To establish strategies for selecting a suitable viral type, this article aims to provide readers with an overview of viral recombinant technology, viral structure, tropism, and differences between serotypes and pseudotypes for three of the most commonly used vectors in neurobiology research: adeno-associated viruses, retro/lentiviruses, and glycoprotein-deleted rabies viruses. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Shih-Heng Chen
- Viral Vector Core, National Institute of Environmental Health Sciences, NIH/DHHS, Research Triangle Park, North Carolina.,Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH/DHHS, Research Triangle Park, North Carolina
| | - Juhee Haam
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH/DHHS, Research Triangle Park, North Carolina
| | - Mitzie Walker
- Viral Vector Core, National Institute of Environmental Health Sciences, NIH/DHHS, Research Triangle Park, North Carolina.,Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH/DHHS, Research Triangle Park, North Carolina
| | - Erica Scappini
- Signal Transduction Laboratory, Fluorescence Microscopy and Imaging Center, National Institute of Environmental Health Sciences, NIH/DHHS, Research Triangle Park, North Carolina
| | - John Naughton
- Gene Transfer, Targeting and Therapeutics (GT3) Core, Salk Institute for Biological Studies, La Jolla, California
| | - Negin P Martin
- Viral Vector Core, National Institute of Environmental Health Sciences, NIH/DHHS, Research Triangle Park, North Carolina.,Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH/DHHS, Research Triangle Park, North Carolina
| |
Collapse
|
5
|
DiCarlo JE, Mahajan VB, Tsang SH. Gene therapy and genome surgery in the retina. J Clin Invest 2018; 128:2177-2188. [PMID: 29856367 DOI: 10.1172/jci120429] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Precision medicine seeks to treat disease with molecular specificity. Advances in genome sequence analysis, gene delivery, and genome surgery have allowed clinician-scientists to treat genetic conditions at the level of their pathology. As a result, progress in treating retinal disease using genetic tools has advanced tremendously over the past several decades. Breakthroughs in gene delivery vectors, both viral and nonviral, have allowed the delivery of genetic payloads in preclinical models of retinal disorders and have paved the way for numerous successful clinical trials. Moreover, the adaptation of CRISPR-Cas systems for genome engineering have enabled the correction of both recessive and dominant pathogenic alleles, expanding the disease-modifying power of gene therapies. Here, we highlight the translational progress of gene therapy and genome editing of several retinal disorders, including RPE65-, CEP290-, and GUY2D-associated Leber congenital amaurosis, as well as choroideremia, achromatopsia, Mer tyrosine kinase- (MERTK-) and RPGR X-linked retinitis pigmentosa, Usher syndrome, neovascular age-related macular degeneration, X-linked retinoschisis, Stargardt disease, and Leber hereditary optic neuropathy.
Collapse
Affiliation(s)
- James E DiCarlo
- Jonas Children's Vision Care and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, New York, USA
| | - Vinit B Mahajan
- Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, California, USA.,Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Stephen H Tsang
- Jonas Children's Vision Care and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
6
|
Lykken EA, Shyng C, Edwards RJ, Rozenberg A, Gray SJ. Recent progress and considerations for AAV gene therapies targeting the central nervous system. J Neurodev Disord 2018; 10:16. [PMID: 29776328 PMCID: PMC5960126 DOI: 10.1186/s11689-018-9234-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/01/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Neurodevelopmental disorders, as a class of diseases, have been particularly difficult to treat even when the underlying cause(s), such as genetic alterations, are understood. What treatments do exist are generally not curative and instead seek to improve quality of life for affected individuals. The advent of gene therapy via gene replacement offers the potential for transformative therapies to slow or even stop disease progression for current patients and perhaps minimize or prevent the appearance of symptoms in future patients. MAIN BODY This review focuses on adeno-associated virus (AAV) gene therapies for diseases of the central nervous system. An overview of advances in AAV vector design for therapy is provided, along with a description of current strategies to develop AAV vectors with tailored tropism. Next, progress towards treatment of neurodegenerative diseases is presented at both the pre-clinical and clinical stages, focusing on a few select diseases to highlight broad categories of therapeutic parameters. Special considerations for more challenging cases are then discussed in addition to the immunological aspects of gene therapy. CONCLUSION With the promising clinical trial results that have been observed for the latest AAV gene therapies and continued pre-clinical successes, the question is no longer whether a therapy can be developed for certain neurodevelopmental disorders, but rather, how quickly.
Collapse
Affiliation(s)
- Erik Allen Lykken
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Charles Shyng
- University of North Carolina at Chapel Hill, Gene Therapy Center, Chapel Hill, NC 27599 USA
| | - Reginald James Edwards
- University of North Carolina at Chapel Hill, Gene Therapy Center, Chapel Hill, NC 27599 USA
| | - Alejandra Rozenberg
- University of North Carolina at Chapel Hill, Gene Therapy Center, Chapel Hill, NC 27599 USA
| | - Steven James Gray
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| |
Collapse
|
7
|
Rincon MY, de Vin F, Duqué SI, Fripont S, Castaldo SA, Bouhuijzen-Wenger J, Holt MG. Widespread transduction of astrocytes and neurons in the mouse central nervous system after systemic delivery of a self-complementary AAV-PHP.B vector. Gene Ther 2018. [PMID: 29523880 DOI: 10.1038/s41434-018-0005-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Until recently, adeno-associated virus 9 (AAV9) was considered the AAV serotype most effective in crossing the blood-brain barrier (BBB) and transducing cells of the central nervous system (CNS), following systemic injection. However, a newly engineered capsid, AAV-PHP.B, is reported to cross the BBB at even higher efficiency. We investigated how much we could boost CNS transgene expression by using AAV-PHP.B carrying a self-complementary (sc) genome. To allow comparison, 6 weeks old C57BL/6 mice received intravenous injections of scAAV2/9-GFP or scAAV2/PHP.B-GFP at equivalent doses. Three weeks postinjection, transgene expression was assessed in brain and spinal cord. We consistently observed more widespread CNS transduction and higher levels of transgene expression when using the scAAV2/PHP.B-GFP vector. In particular, we observed an unprecedented level of astrocyte transduction in the cortex, when using a ubiquitous CBA promoter. In comparison, neuronal transduction was much lower than previously reported. However, strong neuronal expression (including spinal motor neurons) was observed when the human synapsin promoter was used. These findings constitute the first reported use of an AAV-PHP.B capsid, encapsulating a scAAV genome, for gene transfer in adult mice. Our results underscore the potential of this AAV construct as a platform for safer and more efficacious gene therapy vectors for the CNS.
Collapse
Affiliation(s)
- Melvin Y Rincon
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,KU Leuven, Department of Neuroscience, Leuven, Belgium
| | - Filip de Vin
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,KU Leuven, Department of Neuroscience, Leuven, Belgium
| | - Sandra I Duqué
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,KU Leuven, Department of Neuroscience, Leuven, Belgium
| | - Shelly Fripont
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,KU Leuven, Department of Neuroscience, Leuven, Belgium
| | - Stephanie A Castaldo
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.,KU Leuven, Department of Oncology, Leuven, Belgium
| | - Jessica Bouhuijzen-Wenger
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.,KU Leuven, Department of Neuroscience, Leuven, Belgium
| | - Matthew G Holt
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium. .,KU Leuven, Department of Neuroscience, Leuven, Belgium.
| |
Collapse
|
8
|
Jergova S, Gordon CE, Gajavelli S, Sagen J. Experimental Gene Therapy with Serine-Histogranin and Endomorphin 1 for the Treatment of Chronic Neuropathic Pain. Front Mol Neurosci 2017; 10:406. [PMID: 29276474 PMCID: PMC5727090 DOI: 10.3389/fnmol.2017.00406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/22/2017] [Indexed: 01/10/2023] Open
Abstract
The insufficient pain relief provided by current pharmacotherapy for chronic neuropathic pain is a serious medical problem. The enhanced glutamate signaling via NMDA receptors appears to be one of the key events in the development of chronic pain. Although effective, clinical use of systemic NMDA antagonists is limited by adverse effects such as hallucinations and motor dysfunction. Opioids are also potent analgesics but their chronic use is accompanied by tolerance and risk of addiction. However, combination of NMDA antagonists and opioids seems to provide a stable pain relieve at subthreshold doses of both substances, eliminating development of side effects. Our previous research showed that combined delivery of NMDA antagonist Serine histrogranin (SHG) and endomorphin1 (EM1) leads to attenuation of acute and chronic pain. The aim of this study was to design and evaluate an analgesic potency of the gene construct encoding SHG and EM1. Constructs with 1SHG copy in combination with EM1, 1SHG/EM1, and 6SHG/EM1 were intraspinally injected to animals with peripheral nerve injury-induced pain (chronic constriction injury, CCI) or spinal cord injury induced pain (clip compression model, SCI) and tactile and cold allodynia were evaluated. AAV2/8 particles were used for gene delivery. The results demonstrated 6SHG/EM1 as the most efficient for alleviation of pain-related behavior. The effect was observed up to 8 weeks in SCI animals, suggesting the lack of tolerance of possible synergistic effect between SHG and EM1. Intrathecal injection of SHG antibody or naloxone attenuated the analgesic effect in treated animals. Biochemical and histochemical evaluation confirmed the presence of both peptides in the spinal tissue. The results of this study showed that the injection of AAV vectors encoding combined SHG/EM constructs can provide long term attenuation of pain without overt adverse side effects. This approach may provide better treatment options for patients suffering from chronic pain.
Collapse
Affiliation(s)
- Stanislava Jergova
- The Miami Project, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Catherine E Gordon
- The Miami Project, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Shyam Gajavelli
- The Miami Project, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Jacqueline Sagen
- The Miami Project, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|