1
|
Cho H, Benjaber M, Alexis Gkogkidis C, Buchheit M, Ruiz-Rodriguez JF, Grannan BL, Weaver KE, Ko AL, Cramer SC, Ojemann JG, Denison T, Herron JA. Development and Evaluation of a Real-Time Phase-Triggered Stimulation Algorithm for the CorTec Brain Interchange. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3625-3635. [PMID: 39264785 PMCID: PMC11485249 DOI: 10.1109/tnsre.2024.3459801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
With the development and characterization of biomarkers that may reflect neural network state as well as a patient's clinical deficits, there is growing interest in more complex stimulation designs. While current implantable neuromodulation systems offer pathways to expand the design and application of adaptive stimulation paradigms, technological drawbacks of these systems limit adaptive neuromodulation exploration. In this paper, we discuss the implementation of a phase-triggered stimulation paradigm using a research platform composed of an investigational system known as the CorTec Brain Interchange (CorTec GmbH, Freiburg, Germany), and an open-source software tool known as OMNI-BIC. We then evaluate the stimulation paradigm's performance in both benchtop and in vivo human demonstrations. Our findings indicate that the Brain Interchange and OMNI-BIC platform is capable of reliable administration of phase-triggered stimulation and has the potential to help expand investigation within the adaptive neuromodulation design space.
Collapse
|
2
|
Smith RJ, Hays MA, Kamali G, Coogan C, Crone NE, Kang JY, Sarma SV. Stimulating native seizures with neural resonance: a new approach to localize the seizure onset zone. Brain 2022; 145:3886-3900. [PMID: 35703986 PMCID: PMC10200285 DOI: 10.1093/brain/awac214] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/02/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Successful outcomes in epilepsy surgery rely on the accurate localization of the seizure onset zone. Localizing the seizure onset zone is often a costly and time-consuming process wherein a patient undergoes intracranial EEG monitoring, and a team of clinicians wait for seizures to occur. Clinicians then analyse the intracranial EEG before each seizure onset to identify the seizure onset zone and localization accuracy increases when more seizures are captured. In this study, we develop a new approach to guide clinicians to actively elicit seizures with electrical stimulation. We propose that a brain region belongs to the seizure onset zone if a periodic stimulation at a particular frequency produces large amplitude oscillations in the intracranial EEG network that propagate seizure activity. Such responses occur when there is 'resonance' in the intracranial EEG network, and the resonant frequency can be detected by observing a sharp peak in the magnitude versus frequency response curve, called a Bode plot. To test our hypothesis, we analysed single-pulse electrical stimulation response data in 32 epilepsy patients undergoing intracranial EEG monitoring. For each patient and each stimulated brain region, we constructed a Bode plot by estimating a transfer function model from the intracranial EEG 'impulse' or single-pulse electrical stimulation response. The Bode plots were then analysed for evidence of resonance. First, we showed that when Bode plot features were used as a marker of the seizure onset zone, it distinguished successful from failed surgical outcomes with an area under the curve of 0.83, an accuracy that surpassed current methods of analysis with cortico-cortical evoked potential amplitude and cortico-cortical spectral responses. Then, we retrospectively showed that three out of five native seizures accidentally triggered in four patients during routine periodic stimulation at a given frequency corresponded to a resonant peak in the Bode plot. Last, we prospectively stimulated peak resonant frequencies gleaned from the Bode plots to elicit seizures in six patients, and this resulted in an induction of three seizures and three auras in these patients. These findings suggest neural resonance as a new biomarker of the seizure onset zone that can guide clinicians in eliciting native seizures to more quickly and accurately localize the seizure onset zone.
Collapse
Affiliation(s)
- Rachel J Smith
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Mark A Hays
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Golnoosh Kamali
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Christopher Coogan
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Joon Y Kang
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Sridevi V Sarma
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
3
|
Hays MA, Coogan C, Crone NE, Kang JY. Graph theoretical analysis of evoked potentials shows network influence of epileptogenic mesial temporal region. Hum Brain Mapp 2021; 42:4173-4186. [PMID: 34165233 PMCID: PMC8356982 DOI: 10.1002/hbm.25418] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 01/08/2023] Open
Abstract
It is now widely accepted that seizures arise from the coordinated activity of epileptic networks, and as a result, traditional methods of analyzing seizures have been augmented by techniques like single-pulse electrical stimulation (SPES) that estimate effective connectivity in brain networks. We used SPES and graph analytics in 18 patients undergoing intracranial EEG monitoring to investigate effective connectivity between recording sites within and outside mesial temporal structures. We compared evoked potential amplitude, network density, and centrality measures inside and outside the mesial temporal region (MTR) across three patient groups: focal epileptogenic MTR, multifocal epileptogenic MTR, and non-epileptogenic MTR. Effective connectivity within the MTR had significantly greater magnitude (evoked potential amplitude) and network density, regardless of epileptogenicity. However, effective connectivity between MTR and surrounding non-epileptogenic regions was of greater magnitude and density in patients with focal epileptogenic MTR compared to patients with multifocal epileptogenic MTR and those with non-epileptogenic MTR. Moreover, electrodes within focal epileptogenic MTR had significantly greater outward network centrality compared to electrodes outside non-epileptogenic regions and to multifocal and non-epileptogenic MTR. Our results indicate that the MTR is a robustly connected subnetwork that can exert an overall elevated propagative influence over other brain regions when it is epileptogenic. Understanding the underlying effective connectivity and roles of epileptogenic regions within the larger network may provide insights that eventually lead to improved surgical outcomes.
Collapse
Affiliation(s)
- Mark A Hays
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christopher Coogan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joon Y Kang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Mitsuhashi T, Sonoda M, Iwaki H, Luat AF, Sood S, Asano E. Effects of depth electrode montage and single-pulse electrical stimulation sites on neuronal responses and effective connectivity. Clin Neurophysiol 2020; 131:2781-2792. [PMID: 33130438 DOI: 10.1016/j.clinph.2020.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/05/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To determine the optimal depth electrode montages for the assessment of effective connectivity based on single-pulse electrical stimulation (SPES). To determine the effect of SPES locations on the extent of resulting neuronal propagations. METHODS We studied 14 epilepsy patients who underwent invasive monitoring with depth electrodes and measurement of cortico-cortical evoked potentials (CCEPs) and cortico-cortical spectral responses (CCSRs). We determined the effects of electrode montage and stimulus sites on the CCEP/CCSR amplitudes. RESULTS Bipolar and Laplacian montages effectively reduced the degree of SPES-related signal deflections at extra-cortical levels, including outside the brain, while maintaining those at the cortical level. SPES of structures more proximal to the deep white matter, compared to the cortical surface, elicited greater CCEPs and CCSRs. CONCLUSIONS On depth electrode recording, bipolar and Laplacian montages are suitable for measurement of near-field CCEPs and CCSRs. SPES of the white matter axons may induce neuronal propagations to extensive regions of the cerebral cortex. SIGNIFICANCE This study helps to establish the practical guidelines on the diagnostic use of CCEPs/CCSRs.
Collapse
Affiliation(s)
- Takumi Mitsuhashi
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Neurosurgery, Juntendo University, Tokyo 1138421, Japan
| | - Masaki Sonoda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Neurosurgery, Yokohama City University, Yokohama 2360004, Japan
| | - Hirotaka Iwaki
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai 9808575, Japan
| | - Aimee F Luat
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Sandeep Sood
- Department of Neurosurgery, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Translational Neuroscience Program, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
5
|
Fallegger F, Schiavone G, Lacour SP. Conformable Hybrid Systems for Implantable Bioelectronic Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903904. [PMID: 31608508 DOI: 10.1002/adma.201903904] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/20/2019] [Indexed: 05/27/2023]
Abstract
Conformable bioelectronic systems are promising tools that may aid the understanding of diseases, alleviate pathological symptoms such as chronic pain, heart arrhythmia, and dysfunctions, and assist in reversing conditions such as deafness, blindness, and paralysis. Combining reduced invasiveness with advanced electronic functions, hybrid bioelectronic systems have evolved tremendously in the last decade, pushed by progress in materials science, micro- and nanofabrication, system assembly and packaging, and biomedical engineering. Hybrid integration refers here to a technological approach to embed within mechanically compliant carrier substrates electronic components and circuits prepared with traditional electronic materials. This combination leverages mechanical and electronic performance of polymer substrates and device materials, respectively, and offers many opportunities for man-made systems to communicate with the body with unmet precision. However, trade-offs between materials selection, manufacturing processes, resolution, electrical function, mechanical integrity, biointegration, and reliability should be considered. Herein, prominent trends in manufacturing conformable hybrid systems are analyzed and key design, function, and validation principles are outlined together with the remaining challenges to produce reliable conformable, hybrid bioelectronic systems.
Collapse
Affiliation(s)
- Florian Fallegger
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, 1202, Geneva, Switzerland
| | - Giuseppe Schiavone
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, 1202, Geneva, Switzerland
| | - Stéphanie P Lacour
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, 1202, Geneva, Switzerland
| |
Collapse
|
6
|
Beuter A, Balossier A, Vassal F, Hemm S, Volpert V. Cortical stimulation in aphasia following ischemic stroke: toward model-guided electrical neuromodulation. BIOLOGICAL CYBERNETICS 2020; 114:5-21. [PMID: 32020368 DOI: 10.1007/s00422-020-00818-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
The aim of this paper is to integrate different bodies of research including brain traveling waves, brain neuromodulation, neural field modeling and post-stroke language disorders in order to explore the opportunity of implementing model-guided, cortical neuromodulation for the treatment of post-stroke aphasia. Worldwide according to WHO, strokes are the second leading cause of death and the third leading cause of disability. In ischemic stroke, there is not enough blood supply to provide enough oxygen and nutrients to parts of the brain, while in hemorrhagic stroke, there is bleeding within the enclosed cranial cavity. The present paper focuses on ischemic stroke. We first review accumulating observations of traveling waves occurring spontaneously or triggered by external stimuli in healthy subjects as well as in patients with brain disorders. We examine the putative functions of these waves and focus on post-stroke aphasia observed when brain language networks become fragmented and/or partly silent, thus perturbing the progression of traveling waves across perilesional areas. Secondly, we focus on a simplified model based on the current literature in the field and describe cortical traveling wave dynamics and their modulation. This model uses a biophysically realistic integro-differential equation describing spatially distributed and synaptically coupled neural networks producing traveling wave solutions. The model is used to calculate wave parameters (speed, amplitude and/or frequency) and to guide the reconstruction of the perturbed wave. A stimulation term is included in the model to restore wave propagation to a reasonably good level. Thirdly, we examine various issues related to the implementation model-guided neuromodulation in the treatment of post-stroke aphasia given that closed-loop invasive brain stimulation studies have recently produced encouraging results. Finally, we suggest that modulating traveling waves by acting selectively and dynamically across space and time to facilitate wave propagation is a promising therapeutic strategy especially at a time when a new generation of closed-loop cortical stimulation systems is about to arrive on the market.
Collapse
Affiliation(s)
- Anne Beuter
- Bordeaux INP, University of Bordeaux, Bordeaux, France.
| | - Anne Balossier
- Service de neurochirurgie fonctionnelle et stéréotaxique, AP-HM La Timone, Aix-Marseille University, Marseille, France
| | - François Vassal
- INSERM U1028 Neuropain, UMR 5292, Centre de Recherche en Neurosciences, Universités Lyon 1 et Saint-Etienne, Saint-Étienne, France
- Service de Neurochirurgie, Hôpital Nord, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Étienne, France
| | - Simone Hemm
- School of Life Sciences, Institute for Medical Engineering and Medical Informatics, University of Applied Sciences and Arts Northwestern Switzerland, 4132, Muttenz, Switzerland
| | - Vitaly Volpert
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622, Villeurbanne, France
- INRIA Team Dracula, INRIA Lyon La Doua, 69603, Villeurbanne, France
- People's Friendship University of Russia (RUDN University), Miklukho-Maklaya St, Moscow, Russian Federation, 117198
| |
Collapse
|
7
|
Usami K, Korzeniewska A, Matsumoto R, Kobayashi K, Hitomi T, Matsuhashi M, Kunieda T, Mikuni N, Kikuchi T, Yoshida K, Miyamoto S, Takahashi R, Ikeda A, Crone NE. The neural tides of sleep and consciousness revealed by single-pulse electrical brain stimulation. Sleep 2019; 42:zsz050. [PMID: 30794319 PMCID: PMC6559171 DOI: 10.1093/sleep/zsz050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/01/2019] [Indexed: 12/12/2022] Open
Abstract
Wakefulness and sleep arise from global changes in brain physiology that may also govern the flow of neural activity between cortical regions responsible for perceptual processing versus planning and action. To test whether and how the sleep/wake cycle affects the overall propagation of neural activity in large-scale brain networks, we applied single-pulse electrical stimulation (SPES) in patients implanted with intracranial EEG electrodes for epilepsy surgery. SPES elicited cortico-cortical spectral responses at high-gamma frequencies (CCSRHG, 80-150 Hz), which indexes changes in neuronal population firing rates. Using event-related causality (ERC) analysis, we found that the overall patterns of neural propagation among sites with CCSRHG were different during wakefulness and different sleep stages. For example, stimulation of frontal lobe elicited greater propagation toward parietal lobe during slow-wave sleep than during wakefulness. During REM sleep, we observed a decrease in propagation within frontal lobe, and an increase in propagation within parietal lobe, elicited by frontal and parietal stimulation, respectively. These biases in the directionality of large-scale cortical network dynamics during REM sleep could potentially account for some of the unique experiential aspects of this sleep stage. Together these findings suggest that the regulation of conscious awareness and sleep is associated with differences in the balance of neural propagation across large-scale frontal-parietal networks.
Collapse
Affiliation(s)
- Kiyohide Usami
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Anna Korzeniewska
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Riki Matsumoto
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Katsuya Kobayashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Takefumi Hitomi
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
- Department of Respiratory Care and Sleep Control Medicine, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Masao Matsuhashi
- Research and Educational Unit of Leaders for Integrated Medical System, Kyoto University Graduate School of medicine, Sakyo-ku, Kyoto, Japan
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Shizukawa Toon city, Ehime, Japan
| | - Nobuhiro Mikuni
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
- Department of Neurosurgery, Sapporo Medical University, Chuo-ku, Sapporo, Japan
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
8
|
Gkogkidis CA, Bentler C, Wang X, Gierthmuehlen M, Scheiwe C, Schmitz HC, Haberstroh J, Stieglitz T, Ball T. Neurophysiological Evaluation of a Customizable μECoG-based Wireless Brain Implant. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:2953-2956. [PMID: 30441019 DOI: 10.1109/embc.2018.8513044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The number of implantable bidirectional neural interfaces available for neuroscientific research applications is still limited, despite the rapidly increasing number of customized components. We previously reported on how to translate available components into "ready-to-use" wireless implantable systems utilizing components off-the-shelf (COTS). The aim of the present study was to verify the viability of a micro-electrocorticographic ($\mu $ECoG) device built by this approach. Functionality for both neural recording and stimulation was evaluated in an ovine animal model using acoustic stimuli and cortical electrical stimulation, respectively. We show that auditory evoked responses were reliably recorded in both time and frequency domain and present data that demonstrates the cortical electrical stimulation functionality. The successful recording of neuronal activity suggests that the device can compete with existing implantable systems as a neurotechnological research tool.
Collapse
|