1
|
Renaghan E, Wittels HL, Feigenbaum LA, Wishon MJ, Chong S, Wittels ED, Hendricks S, Hecocks D, Bellamy K, Girardi J, Lee S, Vo T, McDonald SM, Wittels SH. Exposures to Elevated Core Temperatures during Football Training: The Impact on Autonomic Nervous System Recovery and Function. Sports (Basel) 2023; 12:8. [PMID: 38251282 PMCID: PMC10819443 DOI: 10.3390/sports12010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Exercising with elevated core temperatures may negatively affect autonomic nervous system (ANS) function. Additionally, longer training duration under higher core temperatures may augment these negative effects. This study evaluated the relationship between exercise training duration and 24 h ANS recovery and function at ≥37 °C, ≥38 °C and ≥39 °C core temperature thresholds in a sample of male Division I (D1) collegiate American football athletes. Fifty athletes were followed over their 25-week season. Using armband monitors (Warfighter MonitorTM, Tiger Tech Solutions, Inc., Miami, FL, USA), core temperature (°C) and 24 h post-exercise baseline heart rate (HR), HR recovery and heart rate variability (HRV) were measured. For HRV, two time-domain indices were measured: the root mean square of the standard deviation of the NN interval (rMSSD) and the standard deviation of the NN interval (SDNN). Linear regression models were performed to evaluate the associations between exercise training duration and ANS recovery (baseline HR and HRV) and function (HR recovery) at ≥37 °C, ≥38 °C and ≥39 °C core temperature thresholds. On average, the athletes were 21.3 (± 1.4) years old, weighed 103.0 (±20.2) kg and had a body fat percentage of 15.4% (±7.8%, 3.0% to 36.0%). The duration of training sessions was, on average, 161.1 (±40.6) min and they ranged from 90.1 to 339.6 min. Statistically significant associations between training duration and 24 h ANS recovery and function were observed at both the ≥38.0 °C (baseline HR: β = 0.10 ± 0.02, R2 = 0.26, p < 0.0000; HR recovery: β = -0.06 ± 0.02, R2 = 0.21, p = 0.0002; rMSSD: β = -0.11 ± 0.02, R2 = 0.24, p < 0.0000; and SDNN: β = -0.16 ± 0.04, R2 = 0.22, p < 0.0000) and ≥39.0 °C thresholds (β = 0.39 ± 0.05, R2 = 0.62, p < 0.0000; HR recovery: β = -0.26 ± 0.04, R2 = 0.52, p < 0.0000; rMSSD: β = -0.37 ± 0.05, R2 = 0.58, p < 0.0000; and SDNN: β = -0.67 ± 0.09, R2 = 0.59, p < 0.0000). With increasing core temperatures, increases in slope steepness and strengths of the associations were observed, indicating accelerated ANS deterioration. These findings demonstrate that exercise training under elevated core temperatures (≥38 °C) may negatively influence ANS recovery and function 24 h post exercise and progressively worsen.
Collapse
Affiliation(s)
- Eric Renaghan
- Department of Athletics, Sports Science, University of Miami, Miami, FL 33146, USA; (E.R.); (L.A.F.)
| | - Harrison L. Wittels
- Tiger Tech Solutions, Inc., Miami, FL 33156, USA; (H.L.W.); (M.J.W.); (S.C.); (E.D.W.); (S.H.); (D.H.); (S.H.W.)
| | - Luis A. Feigenbaum
- Department of Athletics, Sports Science, University of Miami, Miami, FL 33146, USA; (E.R.); (L.A.F.)
- Department of Physical Therapy, Miller School of Medicine, University of Miami, Miami, FL 33146, USA;
| | - Michael J. Wishon
- Tiger Tech Solutions, Inc., Miami, FL 33156, USA; (H.L.W.); (M.J.W.); (S.C.); (E.D.W.); (S.H.); (D.H.); (S.H.W.)
| | - Stephanie Chong
- Tiger Tech Solutions, Inc., Miami, FL 33156, USA; (H.L.W.); (M.J.W.); (S.C.); (E.D.W.); (S.H.); (D.H.); (S.H.W.)
| | - Eva D. Wittels
- Tiger Tech Solutions, Inc., Miami, FL 33156, USA; (H.L.W.); (M.J.W.); (S.C.); (E.D.W.); (S.H.); (D.H.); (S.H.W.)
| | - Stephanie Hendricks
- Tiger Tech Solutions, Inc., Miami, FL 33156, USA; (H.L.W.); (M.J.W.); (S.C.); (E.D.W.); (S.H.); (D.H.); (S.H.W.)
| | - Dustin Hecocks
- Tiger Tech Solutions, Inc., Miami, FL 33156, USA; (H.L.W.); (M.J.W.); (S.C.); (E.D.W.); (S.H.); (D.H.); (S.H.W.)
| | - Kyle Bellamy
- Department of Athletics, Nutrition, University of Miami, Miami, FL 33146, USA;
| | - Joe Girardi
- Department of Physical Therapy, Miller School of Medicine, University of Miami, Miami, FL 33146, USA;
| | - Stephen Lee
- United States Army Research Laboratory, Adelphi, MD 20783, USA;
| | - Tri Vo
- Navy Medical Center—San Diego, San Diego, CA 92134, USA;
| | - Samantha M. McDonald
- Tiger Tech Solutions, Inc., Miami, FL 33156, USA; (H.L.W.); (M.J.W.); (S.C.); (E.D.W.); (S.H.); (D.H.); (S.H.W.)
- School of Kinesiology and Recreation, Illinois State University, Normal, IL 61761, USA
| | - S. Howard Wittels
- Tiger Tech Solutions, Inc., Miami, FL 33156, USA; (H.L.W.); (M.J.W.); (S.C.); (E.D.W.); (S.H.); (D.H.); (S.H.W.)
- Department of Anesthesiology, Mount Sinai Medical Center, Miami, FL 33140, USA
- Department of Anesthesiology, Wertheim School of Medicine, Florida International University, Miami, FL 33199, USA
- Miami Beach Anesthesiology Associates, Miami, FL 33140, USA
| |
Collapse
|
2
|
Nocera A, Sbrollini A, Romagnoli S, Morettini M, Gambi E, Burattini L. Physiological and Biomechanical Monitoring in American Football Players: A Scoping Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:3538. [PMID: 37050597 PMCID: PMC10098592 DOI: 10.3390/s23073538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
American football is the sport with the highest rates of concussion injuries. Biomedical engineering applications may support athletes in monitoring their injuries, evaluating the effectiveness of their equipment, and leading industrial research in this sport. This literature review aims to report on the applications of biomedical engineering research in American football, highlighting the main trends and gaps. The review followed the PRISMA guidelines and gathered a total of 1629 records from PubMed (n = 368), Web of Science (n = 665), and Scopus (n = 596). The records were analyzed, tabulated, and clustered in topics. In total, 112 studies were selected and divided by topic in the biomechanics of concussion (n = 55), biomechanics of footwear (n = 6), biomechanics of sport-related movements (n = 6), the aerodynamics of football and catch (n = 3), injury prediction (n = 8), heat monitoring of physiological parameters (n = 8), and monitoring of the training load (n = 25). The safety of players has fueled most of the research that has led to innovations in helmet and footwear design, as well as improvements in the understanding and prevention of injuries and heat monitoring. The other important motivator for research is the improvement of performance, which has led to the monitoring of training loads and catches, and studies on the aerodynamics of football. The main gaps found in the literature were regarding the monitoring of internal loads and the innovation of shoulder pads.
Collapse
|
3
|
Mündel T, Gilmour S, Kruger M, Thomson J. Reliability of a 60-min treadmill running protocol in the heat: The journal Temperature toolbox. Temperature (Austin) 2022; 10:279-286. [PMID: 37554382 PMCID: PMC10405772 DOI: 10.1080/23328940.2022.2143168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/15/2022] Open
Abstract
We determined the reliability of a 60-min treadmill protocol in the heat when spaced >4 weeks apart, longer than the test-retest duration of 1 week found in the literature. Nine unacclimated, trained males (age: 31 ± 8 y; VO2peak: 60 ± 6 ml∙kg-1∙min-1) undertook a 15 min self-paced time-trial pre-loaded with 45 min of running at 70% of individual ventilatory threshold (11.2 ± 0.3 km∙h-1) in 30 ± 1°C (53 ± 5% relative humidity). They repeated this following 40 ± 14 and 76 ± 26 days, with pre-trial standardization of diet and exercise for 48 h. When considering trial 1 as a familiarization, change in core temperature (∆Tcore) during the first 45 min (∆2.0 ± 0.2°C) between trials 2 and 3 yielded bias and 95% limits of agreement (LoA) of -0.10 ± 0.43°C, standard error of measurement (SEM) of 0.13°C and intraclass correlation coefficient (ICC) of 0.75, more reliable than measures of baseline Tcore (36.9 ± 0.2°C; LoA: -0.23 ± 0.90°C; SEM: 0.22°C; ICC: 0.03) and Tcore at 45 min during exercise (38.9 ± 0.4°C; LoA: 0.32 ± 1.12°C; SEM: 0.28°C; ICC: 0.15). The coefficient of variation (CV) between trials 2 and 3 for distance run during the 15 min time-trial was 2.1 ± 2.0% with LoA of 0.001 ± 0.253 km and SEM of 0.037 km. This protocol is reliable spaced ~5 weeks apart when considering the most commonly accepted limit of <5% CV for performance, reinforced by reliability of the ΔTcore being 0.1 ± 0.4°C.
Collapse
Affiliation(s)
- Toby Mündel
- School of Sport Exercise and Nutrition, Massey University, Palmerston North, New Zealand
| | - Simon Gilmour
- Fonterra Research and Development Centre, Palmerston North, New Zealand
| | - Marlena Kruger
- School of Health Sciences, Massey University, Palmerston North, New Zealand
| | - Jasmine Thomson
- Fonterra Research and Development Centre, Palmerston North, New Zealand
| |
Collapse
|
4
|
Garcia CK, Renteria LI, Leite-Santos G, Leon LR, Laitano O. Exertional heat stroke: pathophysiology and risk factors. BMJ MEDICINE 2022; 1:e000239. [PMID: 36936589 PMCID: PMC9978764 DOI: 10.1136/bmjmed-2022-000239] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/06/2022] [Indexed: 12/31/2022]
Abstract
Exertional heat stroke, the third leading cause of mortality in athletes during physical activity, is the most severe manifestation of exertional heat illnesses. Exertional heat stroke is characterised by central nervous system dysfunction in people with hyperthermia during physical activity and can be influenced by environmental factors such as heatwaves, which extend the incidence of exertional heat stroke beyond athletics only. Epidemiological data indicate mortality rates of about 27%, and survivors display long term negative health consequences ranging from neurological to cardiovascular dysfunction. The pathophysiology of exertional heat stroke involves thermoregulatory and cardiovascular overload, resulting in severe hyperthermia and subsequent multiorgan injury due to a systemic inflammatory response syndrome and coagulopathy. Research about risk factors for exertional heat stroke remains limited, but dehydration, sex differences, ageing, body composition, and previous illness are thought to increase risk. Immediate cooling remains the most effective treatment strategy. In this review, we provide an overview of the current literature emphasising the pathophysiology and risk factors of exertional heat stroke, highlighting gaps in knowledge with the objective to stimulate future research.
Collapse
Affiliation(s)
- Christian K Garcia
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Liliana I Renteria
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - Gabriel Leite-Santos
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - Lisa R Leon
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Orlando Laitano
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
5
|
Laitano O, Oki K, Leon LR. The Role of Skeletal Muscles in Exertional Heat Stroke Pathophysiology. Int J Sports Med 2021; 42:673-681. [PMID: 33772503 DOI: 10.1055/a-1400-9754] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The active participation of skeletal muscles is a unique characteristic of exertional heat stroke. Nevertheless, the only well-documented link between skeletal muscle activities and exertional heat stroke pathophysiology is the extensive muscle damage (e. g., rhabdomyolysis) and subsequent leakage of intramuscular content into the circulation of exertional heat stroke victims. Here, we will present and discuss rarely explored roles of skeletal muscles in the context of exertional heat stroke pathophysiology and recovery. This includes an overview of heat production that contributes to severe hyperthermia and the synthesis and secretion of bioactive molecules, such as cytokines, chemokines and acute phase proteins. These molecules can alter the overall inflammatory status from pro- to anti-inflammatory, affecting other organ systems and influencing recovery. The activation of innate immunity can determine whether a victim is ready to return to physical activity or experiences a prolonged convalescence. We also provide a brief discussion on whether heat acclimation can shift skeletal muscle secretory phenotype to prevent or aid recovery from exertional heat stroke. We conclude that skeletal muscles should be considered as a key organ system in exertional heat stroke pathophysiology.
Collapse
Affiliation(s)
- Orlando Laitano
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, United States
| | - Kentaro Oki
- Thermal & Mountain Medicine Devision, United States Army Research Institute of Environmental Medicine, Natick, United States
| | - Lisa R Leon
- Thermal & Mountain Medicine Devision, United States Army Research Institute of Environmental Medicine, Natick, United States
| |
Collapse
|