1
|
Séon N, Amiot R, Suan G, Lécuyer C, Fourel F, Vinçon-Laugier A, Charbonnier S, Vincent P. Regional heterothermies recorded in the oxygen isotope composition of harbour seal skeletal elements. J Therm Biol 2024; 120:103825. [PMID: 38430855 DOI: 10.1016/j.jtherbio.2024.103825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Regional heterothermy is a strategy used by marine mammals to maintain a high and stable core body temperature, but its identification needs in situ measurements difficult to set up in extant wild organisms and inapplicable to extinct ones. We have analysed the oxygen isotope composition of bioapatite phosphate (δ18Op) from one permanent tooth and from thirty-six skeletal elements of one adult male harbour seal (Phoca vitulina) from the Baie de Somme (Hauts-de-France, France). We propose that the observed intra-skeletal δ18Op variability reflects tissue temperature heterogeneities typical of the pinniped regional heterothermy strategy. Our δ18Op data indicate that bone hydroxylapatite from harbour seal autopod skeletal elements (metacarpals, metatarsals, and phalanxes) mineralises at a lower temperature than that of the bone from the axial skeleton (e.g. vertebrae, ribs, and girdle bones). The results suggest that it is possible to locate a history of regional heterothermies in amphibious marine vertebrates using the δ18Op values of their mineralised tissues. This enables direct evaluation of the thermophysiology of both modern and fossil Pinnipedia from their skeletons opening perspectives on understanding their thermal adaptation to the marine environment in the fossil record. In addition to thermophysiology, oxygen isotope data from the permanent teeth of Pinnipedia, which are formed during the in utero phase from body fluid of the mother and at a stable temperature, could be valuable for locating the geographical areas inhabited by existing Pinnipedia females during their gestation period.
Collapse
Affiliation(s)
- Nicolas Séon
- Centre de Recherche en Paléontologie - Paris (CR2P), CNRS, Muséum National d'Histoire Naturelle, Sorbonne Université, 57 rue Cuvier, Cedex 05, 75231, Paris, France; Université Claude Bernard Lyon1, LGL-TPE, UMR 5276, CNRS, ENSL, UJM, F-69622, Villeurbanne, France.
| | - Romain Amiot
- Université Claude Bernard Lyon1, LGL-TPE, UMR 5276, CNRS, ENSL, UJM, F-69622, Villeurbanne, France.
| | - Guillaume Suan
- Université Claude Bernard Lyon1, LGL-TPE, UMR 5276, CNRS, ENSL, UJM, F-69622, Villeurbanne, France.
| | - Christophe Lécuyer
- Université Claude Bernard Lyon1, LGL-TPE, UMR 5276, CNRS, ENSL, UJM, F-69622, Villeurbanne, France.
| | - François Fourel
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, CNRS, UMR 5023, Université Claude Bernard Lyon 1, Villeurbanne, France.
| | - Arnauld Vinçon-Laugier
- Université Claude Bernard Lyon1, LGL-TPE, UMR 5276, CNRS, ENSL, UJM, F-69622, Villeurbanne, France.
| | - Sylvain Charbonnier
- Centre de Recherche en Paléontologie - Paris (CR2P), CNRS, Muséum National d'Histoire Naturelle, Sorbonne Université, 57 rue Cuvier, Cedex 05, 75231, Paris, France.
| | - Peggy Vincent
- Centre de Recherche en Paléontologie - Paris (CR2P), CNRS, Muséum National d'Histoire Naturelle, Sorbonne Université, 57 rue Cuvier, Cedex 05, 75231, Paris, France.
| |
Collapse
|
2
|
Costa DP, Favilla AB. Field physiology in the aquatic realm: ecological energetics and diving behavior provide context for elucidating patterns and deviations. J Exp Biol 2023; 226:jeb245832. [PMID: 37843467 DOI: 10.1242/jeb.245832] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Comparative physiology has developed a rich understanding of the physiological adaptations of organisms, from microbes to megafauna. Despite extreme differences in size and a diversity of habitats, general patterns are observed in their physiological adaptations. Yet, many organisms deviate from the general patterns, providing an opportunity to understand the importance of ecology in determining the evolution of unusual adaptations. Aquatic air-breathing vertebrates provide unique study systems in which the interplay between ecology, physiology and behavior is most evident. They must perform breath-hold dives to obtain food underwater, which imposes a physiological constraint on their foraging time as they must resurface to breathe. This separation of two critical resources has led researchers to investigate these organisms' physiological adaptations and trade-offs. Addressing such questions on large marine animals is best done in the field, given the difficulty of replicating the environment of these animals in the lab. This Review examines the long history of research on diving physiology and behavior. We show how innovative technology and the careful selection of research animals have provided a holistic understanding of diving mammals' physiology, behavior and ecology. We explore the role of the aerobic diving limit, body size, oxygen stores, prey distribution and metabolism. We then identify gaps in our knowledge and suggest areas for future research, pointing out how this research will help conserve these unique animals.
Collapse
Affiliation(s)
- Daniel P Costa
- Institute of Marine Sciences, Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Arina B Favilla
- Institute of Marine Sciences, Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| |
Collapse
|
3
|
Pearson LE, Weitzner EL, Tomanek L, Liwanag HEM. Metabolic cost of thermoregulation decreases after the molt in developing Weddell seal pups. J Exp Biol 2022; 225:274807. [PMID: 35217875 DOI: 10.1242/jeb.242773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 02/17/2022] [Indexed: 11/20/2022]
Abstract
Allocation of energy to thermoregulation greatly contributes to the metabolic cost of endothermy, especially in extreme ambient conditions. Weddell seal (Leptonychotes weddellii) pups born in Antarctica must survive both on ice and in water, two environments with very different thermal conductivities. This disparity likely requires pups to allocate additional energy toward thermoregulation rather than growth or development of swimming capabilities required for independent foraging. We measured longitudinal changes in resting metabolic rate (RMR) for Weddell seal pups (n=8) in air and water from one to seven weeks of age, using open-flow respirometry. Concurrently, we collected molt, morphometric, and dive behavior data. Absolute-MR in air followed the expected allometric relationship with mass. Absolute-MR in water was not allometric with mass, despite a 3-fold increase in mass between one and seven weeks of age. Developmental stage (or molting stage), rather than calendar age, determined when pups were thermally capable of being in the water. We consistently observed post-molt pups had lower RMR in air and water (6.67±1.4 and 7.90±2.38 ml O2 min-1kg-1, respectively) than pre-molt (air: 9.37±2.42 ml O2 min-1kg-1, water: 13.40±3.46 ml O2 min-1kg-1) and molting pups (air: 8.45±2.05 ml O2 min-1kg-1, water: 10.4±1.63 ml O2 min-1kg-1). RMR in air and water were equivalent only for post-molt pups. Despite the increased energy cost, molting pups spent 3x more time in the water than other pups. These results support the idea of an energetic trade-off during early development; pups expend more energy for thermoregulation in water, yet gain experience needed for independence.
Collapse
Affiliation(s)
- Linnea E Pearson
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93401, USA
| | - Emma L Weitzner
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93401, USA
| | - Lars Tomanek
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93401, USA
| | - Heather E M Liwanag
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93401, USA
| |
Collapse
|
4
|
Wright T, Sheffield-Moore M. Skeletal muscle plasticity and thermogenesis: Insights from sea otters. Temperature (Austin) 2021; 9:119-121. [DOI: 10.1080/23328940.2021.2004048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Traver Wright
- Department of Health and Kinesiology, Texas A&M University, College Station, College Station, TX, USA
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Melinda Sheffield-Moore
- Department of Health and Kinesiology, Texas A&M University, College Station, College Station, TX, USA
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|