1
|
Wang Y, Sun H, Zhao W, Wang T, Zou M, Han Y, Sun Y, Peng X. Low let-7d microRNA levels in chick embryos enhance innate immunity against Mycoplasma gallisepticum by suppressing the mitogen-activated protein kinase pathway. Vet Res 2023; 54:50. [PMID: 37337278 DOI: 10.1186/s13567-023-01178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/25/2023] [Indexed: 06/21/2023] Open
Abstract
Chick embryos are a valuable model for studying immunity and vaccines. Therefore, it is crucial to investigate the molecular mechanism of the Mycoplasma gallisepticum (MG)-induced immune response in chick embryos for the prevention and control of MG. In this study, we screened for downregulated let-7d microRNA in MG-infected chicken embryonic lungs to explore its involvement in the innate immune mechanism against MG. Here, we demonstrated that low levels of let-7d are a protective mechanism for chicken embryo primary type II pneumocytes (CP-II) in the presence of MG. Specifically, we found that depressed levels of let-7 in CP-II cells reduced the adhesion capacity of MG. This suppressive effect was achieved through the activated mitogen-activated protein kinase phosphatase 1 (MKP1) target gene and the inactivated mitogen-activated protein kinase (MAPK) pathway. Furthermore, MG-induced hyperinflammation and cell death were both alleviated by downregulation of let-7d. In conclusion, chick embryos protect themselves against MG infection through the innate immune molecule let-7d, which may result from its function as an inhibitor of the MAPK pathway to effectively mitigate MG adhesion, the inflammatory response and cell apoptosis. This study may provide new insight into the development of vaccines against MG.
Collapse
Affiliation(s)
- Yingjie Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Huanling Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Wenqing Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Tengfei Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Mengyun Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yun Han
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yingfei Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
2
|
Long Noncoding RNA SNHG4 Attenuates the Injury of Myocardial Infarction via Regulating miR-148b-3p/DUSP1 Axis. Cardiovasc Ther 2022; 2022:1652315. [PMID: 36545243 PMCID: PMC9744614 DOI: 10.1155/2022/1652315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/26/2022] [Accepted: 11/05/2022] [Indexed: 12/12/2022] Open
Abstract
Objective Long noncoding RNAs (lncRNAs), including some members of small nucleolar RNA host gene (SNHG), are important regulators in myocardial injury, while the role of SNHG4 in myocardial infarction (MI) is rarely known. This study is aimed at exploring the regulatory role and mechanisms of SNHG4 on MI. Methods Cellular and rat models of MI were established. The expression of relating genes was measured by qRT-PCR and/or western blot. In vitro, cell viability was detected by MTT assay, and cell apoptosis was assessed by caspase-3 level, Bax/Bcl-2 expression, and/or flow cytometry. The inflammation was evaluated by TNF-α, IL-1β, and IL-6 levels. The myocardial injury in MI rats was evaluated by echocardiography, TTC/HE/MASSON/TUNEL staining, and immunohistochemistry (Ki67). DLR assay was performed to confirm the target relationships. Results SNHG4 was downregulated in hypoxia-induced H9c2 cells and MI rats, and its overexpression enhanced cell viability and inhibited cell apoptosis and inflammation both in vitro and in vivo. SNHG4 overexpression also decreased infarct and fibrosis areas, relieved pathological changes, and improved heart function in MI rats. In addition, miR-148b-3p was an action target of SNHG4, and its silencing exhibited consistent results with SNHG4 overexpression in vitro. DUSP1 was a target of miR-148b-3p, which inhibited the apoptosis of hypoxia-induced H9c2 cells. Both miR-148b-3p overexpression and DUSP1 silencing weakened the effects of SNHG4 overexpression on protecting H9c2 cells against hypoxia. Conclusions Overexpression of SNHG4 relieved MI through regulating miR-148b-3p/DUSP1, providing potential therapeutic targets.
Collapse
|
3
|
He F, Wu Z, Wang Y, Yin L, Lu S, Dai L. Downregulation of tripartite motif protein 11 attenuates cardiomyocyte apoptosis after ischemia/reperfusion injury via DUSP1-JNK1/2. Cell Biol Int 2021; 46:148-157. [PMID: 34694031 PMCID: PMC9299661 DOI: 10.1002/cbin.11716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/09/2021] [Accepted: 10/16/2021] [Indexed: 11/11/2022]
Abstract
Currently, the prevention of ischemic diseases such as myocardial infarction associated with ischemia/reperfusion (I/R) injury remains to be a challenge. Thus, this study was designed to explore the effects of tripartite motif protein 11 (TRIM11) on cardiomyocytes I/R injury and its underlying mechanism. Cardiomyocytes AC16 were used to establish an I/R injury cell model. After TRIM11 downregulation in I/R cells, cell proliferation (0, 12, 24, and 48 h) and apoptosis at 48 h as well as the related molecular changes in oxidative stress‐related pathways was detected. Further, after the treatment of TRIM11 overexpression, SP600125, or DUSP1 overexpression, cell proliferation, apoptosis, and related genes were detected again. As per our findings, it was determined that TRIM11 was highly expressed in the cardiomyocytes AC16 after I/R injury. Downregulation of TRIM11 was determined to have significantly reduced I/R‐induced proliferation suppression and apoptosis. Besides, I/R‐activated c‐Jun N‐terminal kinase (JNK) signaling and cleaved caspase 3 and Bax expression were significantly inhibited by TRIM11 downregulation. In addition, the overexpression of TRIM11 significantly promoted apoptosis in AC16 cells, and JNK1/2 inhibition and DUSP1 overexpression potently counteracted the induction of TRIM11 overexpression in AC16 cells. These suggested that the downregulation of TRIM11 attenuates apoptosis in AC16 cells after I/R injury probably through the DUSP1‐JNK1/2 pathways.
Collapse
Affiliation(s)
- Fang He
- Shanghai Changning Mental Health Center, Shanghai, China
| | - Zheqian Wu
- Department of Emergency, Shidong Hospital of Yangpu District, Shanghai, China
| | - Yong Wang
- Department of Emergency, Shidong Hospital of Yangpu District, Shanghai, China
| | - Lili Yin
- Department of Emergency, Shidong Hospital of Yangpu District, Shanghai, China
| | - Shijie Lu
- Department of Emergency, Shidong Hospital of Yangpu District, Shanghai, China
| | - Lihua Dai
- Department of Emergency, Shidong Hospital of Yangpu District, Shanghai, China
| |
Collapse
|
4
|
Monzen S, Tatara Y, Mariya Y, Chiba M, Wojcik A, Lundholm L. HER2-positive breast cancer that resists therapeutic drugs and ionizing radiation releases sphingomyelin-based molecules to circulating blood serum. Mol Clin Oncol 2020; 13:70. [PMID: 33005404 PMCID: PMC7523270 DOI: 10.3892/mco.2020.2140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/16/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the second most common cancer in the world based on incidence, reaching more than 2 million new cases in 2018, while continuing to increase. Invasive ductal carcinoma is the most common type of this cancer, making up approximately 70-80% of all breast cancer diagnoses. In particular, the type of breast cancer overexpressing human epidermal growth factor receptor 2 (HER2) has potential of strong proliferation, migration and invasion and early treatment is necessary. The authors identified and studied a single patient displaying complete therapeutic resistance to monoclonal anti-HER2 antibody therapy, chemotherapy and radiotherapy. A patient who exhibited resistance to postoperative adjuvant therapy after mastectomy was selected from HER2-positive breast cancer, and this patient had the grade of T4bN2aM0, Stage IIIB. The patient samples, blood serum and cancer tissue, were analyzed by metabolome and immunostaining technique, respectively. The characteristics of peripheral blood serum and solid tumor were investigated, aiming to find new serum biomarker(s) using the metabolomics technique. A correlation between the appearance of HER2-positive cancer tissue and serum concentration of the sphingomyelin family was found. In addition, HER2-positive tumor tissue in both the primary and recurrent cancer express the sphingomyelinase. These results suggest that sphingomyelins from this cancer tissue leads to therapy resistance, induction of invasion and strong proliferation.
Collapse
Affiliation(s)
- Satoru Monzen
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan
| | - Yota Tatara
- Department of Glycotechnology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Yasushi Mariya
- Department of Radiology, Mutsu General Hospital, Mutsu, Aomori 035-0071, Japan
| | - Mitsuru Chiba
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan
| | - Andrzej Wojcik
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 114 18 Stockholm, Sweden
| | - Lovisa Lundholm
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 114 18 Stockholm, Sweden
| |
Collapse
|
5
|
Elevated HDAC activity and altered histone phospho-acetylation confer acquired radio-resistant phenotype to breast cancer cells. Clin Epigenetics 2020; 12:4. [PMID: 31900196 PMCID: PMC6942324 DOI: 10.1186/s13148-019-0800-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/23/2019] [Indexed: 12/18/2022] Open
Abstract
Background Poor-responsiveness of tumors to radiotherapy is a major clinical problem. Owing to the dynamic nature of the epigenome, the identification and targeting of potential epigenetic modifiers may be helpful to curb radio-resistance. This requires a detailed exploration of the epigenetic changes that occur during the acquirement of radio-resistance. Such an understanding can be applied for effective utilization of treatment adjuncts to enhance the efficacy of radiotherapy and reduce the incidence of tumor recurrence. Results This study explored the epigenetic alterations that occur during the acquirement of radio-resistance. Sequential irradiation of MCF7 breast cancer cell line up to 20 Gy generated a radio-resistant model. Micrococcal nuclease digestion demonstrated the presence of compact chromatin architecture coupled with decreased levels of histone PTMs H3K9ac, H3K27 ac, and H3S10pK14ac in the G0/G1 and mitotic cell cycle phases of the radio-resistant cells. Further investigation revealed that the radio-resistant population possessed high HDAC and low HAT activity, thus making them suitable candidates for HDAC inhibitor–based radio-sensitization. Treatment of radio-resistant cells with HDAC inhibitor valproic acid led to the retention of γH2AX and decreased H3S10p after irradiation. Additionally, an analysis of 38 human patient samples obtained from 8 different tumor types showed variable tumor HDAC activity, thus demonstrating inter-tumoral epigenetic heterogeneity in a patient population. Conclusion The study revealed that an imbalance of HAT and HDAC activities led to the loss of site-specific histone acetylation and chromatin compaction as breast cancer cells acquired radio-resistance. Due to variation in the tumor HDAC activity among patients, our report suggests performing a prior assessment of the tumor epigenome to maximize the benefit of HDAC inhibitor–based radio-sensitization. Graphical abstract ![]()
Collapse
|
6
|
Teng F, Xu Z, Chen J, Zheng G, Zheng G, Lv H, Wang Y, Wang L, Cheng X. DUSP1 induces apatinib resistance by activating the MAPK pathway in gastric cancer. Oncol Rep 2018; 40:1203-1222. [PMID: 29956792 PMCID: PMC6072387 DOI: 10.3892/or.2018.6520] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022] Open
Abstract
Dual-specificity phosphatase-1 (DUSP1) is an oncogene that is associated with cancer progression following drug resistance. In order to investigate the potential relationship between DUSP1 and apatinib resistance in gastric cancer cells, we preformed many assays to study this problem. DUSP1 gene was detected by RT-qPCR assay, proteins in MAPK pathway were quantified by western blot assay, and CCK-8 assay, flow cytometry and Hoechest 33342 stain were performed to detect the resistance of cells, cell cycles and apoptosis, respectively. Immunohistochemical staining was used to discover the expression of DUSP1 protein in patients' tumor or paratumor tissues. It was found that apatinib (Apa)-resistant gastric cancer (GC) cells showed increased expression of DUSP1, whereas the knockdown of DUSP1 in resistant cells resensitized these cells to Apa. The restored sensitivity to Apa was the result of inactivation of mitogen-activated protein kinase (MAPK) signaling and the induction of apoptosis. The in vitro use of Apa in combination with a DUSP1 inhibitor, triptolide, exerted significant effects on inhibiting the expression of DUSP1, growth inhibition, and apoptosis via the inactivation of MAPK signaling. In patients who did not undergo chemotherapy or targeted therapy, the expression of DUSP1 in adjacent tissues was higher when compared with that observed in tumor tissues. In addition, the expression of DUSP1 was higher in the early stages of GC than in the advanced stages. The expression of DUSP1 in tumor tissues was not associated with the survival rate of the patients. Therefore, increased expression of DUSP1 may be responsible for Apa resistance, and DUSP1 may serve as a biomarker for Apa efficacy. In conclusion, inducing the downregulation of DUSP1 may be a promising strategy to overcome Apa resistance.
Collapse
Affiliation(s)
- Fei Teng
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Zhiyuan Xu
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diagnosis and Treatment of Digestive System Tumor, Hangzhou, Zhejiang 310006, P.R. China
| | - Jiahui Chen
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Guowei Zheng
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Guodian Zheng
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diagnosis and Treatment of Digestive System Tumor, Hangzhou, Zhejiang 310006, P.R. China
| | - Hang Lv
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diagnosis and Treatment of Digestive System Tumor, Hangzhou, Zhejiang 310006, P.R. China
| | - Yiping Wang
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diagnosis and Treatment of Digestive System Tumor, Hangzhou, Zhejiang 310006, P.R. China
| | - Lijing Wang
- Department of Medical Imaging, Zhejiang Provincial Tumor Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Xiangdong Cheng
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diagnosis and Treatment of Digestive System Tumor, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
7
|
Jin Q, Li R, Hu N, Xin T, Zhu P, Hu S, Ma S, Zhu H, Ren J, Zhou H. DUSP1 alleviates cardiac ischemia/reperfusion injury by suppressing the Mff-required mitochondrial fission and Bnip3-related mitophagy via the JNK pathways. Redox Biol 2017; 14:576-587. [PMID: 29149759 PMCID: PMC5691221 DOI: 10.1016/j.redox.2017.11.004] [Citation(s) in RCA: 344] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/31/2017] [Accepted: 11/04/2017] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial fission and selective mitochondrial autophagy (mitophagy) form an essential axis of mitochondrial quality control that plays a critical role in the development of cardiac ischemia-reperfusion (IR) injury. However, the precise upstream molecular mechanism of fission/mitophagy remains unclear. Dual-specificity protein phosphatase1 (DUSP1) regulates cardiac metabolism, but its physiological contribution in the reperfused heart, particularly its influence on mitochondrial homeostasis, is unknown. Here, we demonstrated that cardiac DUSP1 was downregulated following acute cardiac IR injury. In vivo, compared to wild-type mice, DUSP1 transgenic mice (DUSP1TG mice) demonstrated a smaller infarcted area and the improved myocardial function. In vitro, the IR-induced DUSP1 deficiency promoted the activation of JNK which upregulated the expression of the mitochondrial fission factor (Mff). A higher expression level of Mff was associated with elevated mitochondrial fission and mitochondrial apoptosis. Additionally, the loss of DUSP1 also amplified the Bnip3 phosphorylated activation via JNK, leading to the activation of mitophagy. Increased mitophagy overtly consumed mitochondrial mass resulting into the mitochondrial metabolism disorder. However, the reintroduction of DUSP1 blunted Mff/Bnip3 activation and therefore alleviated the fatal mitochondrial fission/mitophagy by inactivating the JNK pathway, providing a survival advantage to myocardial tissue following IR stress. The results of our study suggest that DUSP1 and its downstream JNK pathway are therapeutic targets for conferring protection against IR injury by repressing Mff-mediated mitochondrial fission and Bnip3-required mitophagy.
Collapse
Affiliation(s)
- Qinhua Jin
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| | - Ruibing Li
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China; Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Nan Hu
- Center for Cardiovascular Research and Alternative Medicine, Wyoming University, Laramie, WY 82071, USA
| | - Ting Xin
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China; Department of Cardiology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Pingjun Zhu
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| | - Shunying Hu
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| | - Sai Ma
- Center for Cardiovascular Research and Alternative Medicine, Wyoming University, Laramie, WY 82071, USA
| | - Hong Zhu
- Center for Cardiovascular Research and Alternative Medicine, Wyoming University, Laramie, WY 82071, USA
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, Wyoming University, Laramie, WY 82071, USA
| | - Hao Zhou
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China; Center for Cardiovascular Research and Alternative Medicine, Wyoming University, Laramie, WY 82071, USA.
| |
Collapse
|