1
|
Galvan GC, Friedrich NA, Das S, Daniels JP, Pollan S, Dambal S, Suzuki R, Sanders SE, You S, Tanaka H, Lee YJ, Yuan W, de Bono JS, Vasilevskaya I, Knudsen KE, Freeman MR, Freedland SJ. 27-hydroxycholesterol and DNA damage repair: implication in prostate cancer. Front Oncol 2023; 13:1251297. [PMID: 38188290 PMCID: PMC10771304 DOI: 10.3389/fonc.2023.1251297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction We previously reported that cholesterol homeostasis in prostate cancer (PC) is regulated by 27-hydroxycholesterol (27HC) and that CYP27A1, the enzyme that converts cholesterol to 27HC, is frequently lost in PCs. We observed that restoring the CYP27A1/27HC axis inhibited PC growth. In this study, we investigated the mechanism of 27HC-mediated anti-PC effects. Methods We employed in vitro models and human transcriptomics data to investigate 27HC mechanism of action in PC. LNCaP (AR+) and DU145 (AR-) cells were treated with 27HC or vehicle. Transcriptome profiling was performed using the Affymetrix GeneChip™ microarray system. Differential expression was determined, and gene set enrichment analysis was done using the GSEA software with hallmark gene sets from MSigDB. Key changes were validated at mRNA and protein levels. Human PC transcriptomes from six datasets were analyzed to determine the correlation between CYP27A1 and DNA repair gene expression signatures. DNA damage was assessed via comet assays. Results Transcriptome analysis revealed 27HC treatment downregulated Hallmark pathways related to DNA damage repair, decreased expression of FEN1 and RAD51, and induced "BRCAness" by downregulating genes involved in homologous recombination regulation in LNCaP cells. Consistently, we found a correlation between higher CYP27A1 expression (i.e., higher intracellular 27HC) and decreased expression of DNA repair gene signatures in castration-sensitive PC (CSPC) in human PC datasets. However, such correlation was less clear in metastatic castration-resistant PC (mCRPC). 27HC increased expression of DNA damage repair markers in PC cells, notably in AR+ cells, but no consistent effects in AR- cells and decreased expression in non-neoplastic prostate epithelial cells. While testing the clinical implications of this, we noted that 27HC treatment increased DNA damage in LNCaP cells via comet assays. Effects were reversible by adding back cholesterol, but not androgens. Finally, in combination with olaparib, a PARP inhibitor, we showed additive DNA damage effects. Discussion These results suggest 27HC induces "BRCAness", a functional state thought to increase sensitivity to PARP inhibitors, and leads to increased DNA damage, especially in CSPC. Given the emerging appreciation that defective DNA damage repair can drive PC growth, future studies are needed to test whether 27HC creates a synthetic lethality to PARP inhibitors and DNA damaging agents in CSPC.
Collapse
Affiliation(s)
- Gloria Cecilia Galvan
- Department of Urology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Nadine A. Friedrich
- Department of Urology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Sanjay Das
- Department of Urology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, United States
- Urology Section, Department of Surgery, Veterans Affairs Health Care System, Durham, NC, United States
| | - James P. Daniels
- Department of Urology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Sara Pollan
- Department of Urology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Shweta Dambal
- Department of Pathology, Duke University School of Medicine, Durham, NC, United States
| | - Ryusuke Suzuki
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Sergio E. Sanders
- Department of Urology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Sungyong You
- Department of Urology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Hisashi Tanaka
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Yeon-Joo Lee
- Department of Urology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Wei Yuan
- Cancer Biomarkers Team, Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Johann S. de Bono
- Cancer Biomarkers Team, Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
- Prostate Cancer Targeted Therapy Group and Drug Development Unit, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Irina Vasilevskaya
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, PA, United States
| | - Karen E. Knudsen
- Department of Cancer Biology at Thomas Jefferson University, Philadelphia, PA, United States
| | - Michael R. Freeman
- Department of Urology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Stephen J. Freedland
- Department of Urology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Urology Section, Department of Surgery, Veterans Affairs Health Care System, Durham, NC, United States
| |
Collapse
|
2
|
Maitland NJ. Resistance to Antiandrogens in Prostate Cancer: Is It Inevitable, Intrinsic or Induced? Cancers (Basel) 2021; 13:327. [PMID: 33477370 PMCID: PMC7829888 DOI: 10.3390/cancers13020327] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/20/2022] Open
Abstract
Increasingly sophisticated therapies for chemical castration dominate first-line treatments for locally advanced prostate cancer. However, androgen deprivation therapy (ADT) offers little prospect of a cure, as resistant tumors emerge rather rapidly, normally within 30 months. Cells have multiple mechanisms of resistance to even the most sophisticated drug regimes, and both tumor cell heterogeneity in prostate cancer and the multiple salvage pathways result in castration-resistant disease related genetically to the original hormone-naive cancer. The timing and mechanisms of cell death after ADT for prostate cancer are not well understood, and off-target effects after long-term ADT due to functional extra-prostatic expression of the androgen receptor protein are now increasingly being recorded. Our knowledge of how these widely used treatments fail at a biological level in patients is deficient. In this review, I will discuss whether there are pre-existing drug-resistant cells in a tumor mass, or whether resistance is induced/selected by the ADT. Equally, what is the cell of origin of this resistance, and does it differ from the treatment-naïve tumor cells by differentiation or dedifferentiation? Conflicting evidence also emerges from studies in the range of biological systems and species employed to answer this key question. It is only by improving our understanding of this aspect of treatment and not simply devising another new means of androgen inhibition that we can improve patient outcomes.
Collapse
Affiliation(s)
- Norman J Maitland
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
3
|
Maiuri T, Suart CE, Hung CLK, Graham KJ, Barba Bazan CA, Truant R. DNA Damage Repair in Huntington's Disease and Other Neurodegenerative Diseases. Neurotherapeutics 2019; 16:948-956. [PMID: 31364066 PMCID: PMC6985310 DOI: 10.1007/s13311-019-00768-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent genome-wide association studies of Huntington's disease (HD) primarily highlighted genes involved in DNA damage repair mechanisms as modifiers of age at onset and disease severity, consistent with evidence that more DNA repair genes are being implicated in late age-onset neurodegenerative diseases. This provides an exciting opportunity to advance therapeutic development in HD, as these pathways have already been under intense investigation in cancer research. Also emerging are the roles of other polyglutamine disease proteins in DNA damage repair mechanisms. A potential universal trigger of oxidative DNA damage shared in these late age-onset diseases is the increase of reactive oxygen species (ROS) in human aging, defining an age-related mechanism that has defied other hypotheses of neurodegeneration. We discuss the potential commonality of DNA damage repair pathways in HD and other neurodegenerative diseases. Potential targets for therapy that may prove beneficial across many of these diseases are also identified, defining nodes in the ataxia telangiectasia-mutated (ATM) complex, mismatch repair, and poly ADP-ribose polymerases (PARPs).
Collapse
Affiliation(s)
- T Maiuri
- Department of Biochemistry and Biomedical Sciences, McMaster University, HSC 4N54, 1200 Main Street West, Hamilton, Ontario, L8N3Z5, Canada
| | - C E Suart
- Department of Biochemistry and Biomedical Sciences, McMaster University, HSC 4N54, 1200 Main Street West, Hamilton, Ontario, L8N3Z5, Canada
| | - C L K Hung
- Department of Biochemistry and Biomedical Sciences, McMaster University, HSC 4N54, 1200 Main Street West, Hamilton, Ontario, L8N3Z5, Canada
| | - K J Graham
- Department of Biochemistry and Biomedical Sciences, McMaster University, HSC 4N54, 1200 Main Street West, Hamilton, Ontario, L8N3Z5, Canada
| | - C A Barba Bazan
- Department of Biochemistry and Biomedical Sciences, McMaster University, HSC 4N54, 1200 Main Street West, Hamilton, Ontario, L8N3Z5, Canada
| | - R Truant
- Department of Biochemistry and Biomedical Sciences, McMaster University, HSC 4N54, 1200 Main Street West, Hamilton, Ontario, L8N3Z5, Canada.
| |
Collapse
|
4
|
Ahmed AA, Robinson T, Palande M, Escara-Wilke J, Dai J, Keller ET. Targeted Notch1 inhibition with a Notch1 antibody, OMP-A2G1, decreases tumor growth in two murine models of prostate cancer in association with differing patterns of DNA damage response gene expression. J Cell Biochem 2019; 120:16946-16955. [PMID: 31099068 DOI: 10.1002/jcb.28954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022]
Abstract
Notch plays a protumorigenic role in many cancers including prostate cancer (PCa). Global notch inhibition of multiple Notch family members using γ-secretase inhibitors has shown efficacy in suppressing PCa growth in murine models. However, global Notch inhibition is associated with marked toxicity due to the widespread function of many different Notch family members in normal cell physiology. Accordingly, in the current study, we explored if specific inhibition of Notch1 would effectively inhibit PCa growth in a murine model. The androgen-dependent VCaP and androgen-independent DU145 cell lines were injected subcutaneously into mice. The mice were treated with either control antibody 1B7.11, anti-Notch1 antibody (OMP-A2G1), docetaxel or the combination of OMP-A2G1 and docetaxel. Tumor growth was measured using calipers. At the end of the study, tumors were assessed for proliferative response, apoptotic response, Notch target gene expression, and DNA damage response (DDR) expression. OMP-A2G1 alone inhibited tumor growth of both PCa cell lines to a greater extent than docetaxel alone. There was no additive or synergistic effect of OMP-A2G1 and docetaxel. The primary toxicity was weight loss that was controlled with dietary supplementation. Proliferation and apoptosis were affected differentially in the two cell lines. OMP-A2G1 increased expression of the DDR gene GADD45α in VCaP cells but downregulated GADD45α in Du145 cells. Taken together, these data show that Notch1 inhibition decreases PCa xenograft growth but does so through different mechanisms in the androgen-dependent VCaP cell line vs the androgen-independent DU145 cell line. These results provide a rationale for further exploration of targeted Notch inhibition for therapy of PCa.
Collapse
Affiliation(s)
- Aqila A Ahmed
- Department of Urology, University of Michigan, Ann Arbor, Michigan
| | - Tyler Robinson
- Department of Urology, University of Michigan, Ann Arbor, Michigan
| | - Monica Palande
- Department of Urology, University of Michigan, Ann Arbor, Michigan
| | | | - Jinlu Dai
- Department of Urology, University of Michigan, Ann Arbor, Michigan
| | - Evan T Keller
- Department of Urology, University of Michigan, Ann Arbor, Michigan.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
5
|
Palmieri D, Tessari A, Coppola V. Scorpins in the DNA Damage Response. Int J Mol Sci 2018; 19:ijms19061794. [PMID: 29914204 PMCID: PMC6032341 DOI: 10.3390/ijms19061794] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 12/19/2022] Open
Abstract
The DNA Damage Response (DDR) is a complex signaling network that comes into play when cells experience genotoxic stress. Upon DNA damage, cellular signaling pathways are rewired to slow down cell cycle progression and allow recovery. However, when the damage is beyond repair, cells activate complex and still not fully understood mechanisms, leading to a complete proliferative arrest or cell death. Several conventional and novel anti-neoplastic treatments rely on causing DNA damage or on the inhibition of the DDR in cancer cells. However, the identification of molecular determinants directing cancer cells toward recovery or death upon DNA damage is still far from complete, and it is object of intense investigation. SPRY-containing RAN binding Proteins (Scorpins) RANBP9 and RANBP10 are evolutionarily conserved and ubiquitously expressed proteins whose biological functions are still debated. RANBP9 has been previously implicated in cell proliferation, survival, apoptosis and migration. Recent studies also showed that RANBP9 is involved in the Ataxia Telangiectasia Mutated (ATM) signaling upon DNA damage. Accordingly, cells lacking RANBP9 show increased sensitivity to genotoxic treatment. Although there is no published evidence, extensive protein similarities suggest that RANBP10 might have partially overlapping functions with RANBP9. Like RANBP9, RANBP10 bears sites putative target of PIK-kinases and high throughput studies found RANBP10 to be phosphorylated following genotoxic stress. Therefore, this second Scorpin might be another overlooked player of the DDR alone or in combination with RANBP9. This review focuses on the relatively unknown role played by RANBP9 and RANBP10 in responding to genotoxic stress.
Collapse
Affiliation(s)
- Dario Palmieri
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and James Comprehensive Cancer Center, Columbus, OH 43210, USA.
| | - Anna Tessari
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and James Comprehensive Cancer Center, Columbus, OH 43210, USA.
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and James Comprehensive Cancer Center, Columbus, OH 43210, USA.
| |
Collapse
|
6
|
Nevedomskaya E, Baumgart SJ, Haendler B. Recent Advances in Prostate Cancer Treatment and Drug Discovery. Int J Mol Sci 2018; 19:ijms19051359. [PMID: 29734647 PMCID: PMC5983695 DOI: 10.3390/ijms19051359] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 02/08/2023] Open
Abstract
Novel drugs, drug sequences and combinations have improved the outcome of prostate cancer in recent years. The latest approvals include abiraterone acetate, enzalutamide and apalutamide which target androgen receptor (AR) signaling, radium-223 dichloride for reduction of bone metastases, sipuleucel-T immunotherapy and taxane-based chemotherapy. Adding abiraterone acetate to androgen deprivation therapy (ADT) in order to achieve complete androgen blockade has proven highly beneficial for treatment of locally advanced prostate cancer and metastatic hormone-sensitive prostate cancer (mHSPC). Also, ADT together with docetaxel treatment showed significant benefit in mHSPC. Ongoing clinical trials for different subgroups of prostate cancer patients include the evaluation of the second-generation AR antagonists enzalutamide, apalutamide and darolutamide, of inhibitors of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) pathway, of inhibitors of DNA damage response, of targeted alpha therapy and of prostate-specific membrane antigen (PSMA) targeting approaches. Advanced clinical studies with immune checkpoint inhibitors have shown limited benefits in prostate cancer and more trials are needed to demonstrate efficacy. The identification of improved, personalized treatments will be much supported by the major progress recently made in the molecular characterization of early- and late-stage prostate cancer using “omics” technologies. This has already led to novel classifications of prostate tumors based on gene expression profiles and mutation status, and should greatly help in the choice of novel targeted therapies best tailored to the needs of patients.
Collapse
Affiliation(s)
- Ekaterina Nevedomskaya
- Therapeutic Research Groups, Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany.
| | - Simon J Baumgart
- Therapeutic Research Groups, Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany.
| | - Bernard Haendler
- Therapeutic Research Groups, Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany.
| |
Collapse
|