1
|
Claude E, de Lhoneux G, Pierreux CE, Marbaix E, de Ville de Goyet M, Boulanger C, Van Damme A, Brichard B, Decottignies A. Detection of alternative lengthening of telomeres mechanism on tumor sections. MOLECULAR BIOMEDICINE 2021; 2:32. [PMID: 35006465 PMCID: PMC8607387 DOI: 10.1186/s43556-021-00055-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/14/2021] [Indexed: 12/20/2022] Open
Abstract
The vast majority of adult cancer cells achieve cellular immortality by activating a telomere maintenance mechanism (TMM). While this is mostly achieved by the de-silencing of hTERT telomerase gene expression, an alternative homologous recombination-based and telomerase-independent mechanism, known as ALT (Alternative Lengthening of Telomeres), is frequently activated in a subset of tumors, including paediatric cancers. Being absent from normal cells, the ALT mechanism offers interesting perspectives for new targeted cancer therapies. To date, however, the development of better translationally applicable tools for ALT detection in tumor sections is still needed. Here, using a newly derived ALT-positive cancer cell mouse xenograft model, we extensively examined how the previously known ALT markers could be used as reliable tools for ALT diagnosis in tumor sections. We found that, together with the detection of ultra-bright telomeric signals (UBS), an ALT hallmark, native telomeric FISH, that detects single-stranded C-rich telomeric DNA, provides a very sensitive and robust tool for ALT diagnosis in tissues. We applied these assays to paediatric tumor samples and readily identified three ALT-positive tumors for which the TMM was confirmed by the gold-standard C-circle amplification assay. Although the latter offers a robust assay for ALT detection in the context of research laboratories, it is more difficult to set up in histopathological laboratories and could therefore be conveniently replaced by the combination of UBS detection and native telomeric FISH.
Collapse
Affiliation(s)
- Eloïse Claude
- Genetic & Epigenetic Alterations of Genomes Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Guillaume de Lhoneux
- Genetic & Epigenetic Alterations of Genomes Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | | | - Etienne Marbaix
- Cell Unit, de Duve Institute, UCLouvain, Brussels, Belgium.,Department of Anatomopathology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Maëlle de Ville de Goyet
- Department of Paediatric Haematology and Oncology, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Cécile Boulanger
- Department of Paediatric Haematology and Oncology, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - An Van Damme
- Department of Paediatric Haematology and Oncology, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Bénédicte Brichard
- Department of Paediatric Haematology and Oncology, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Anabelle Decottignies
- Genetic & Epigenetic Alterations of Genomes Unit, de Duve Institute, UCLouvain, Brussels, Belgium.
| |
Collapse
|