1
|
Jiang ZJ, Hong JC, Tang QX, Lin BW, Zhang WQ, Xia H, Yao XP. Streptococcus suis meningoencephalitis diagnosed with metagenomic next-generation sequencing: A case report with literature review. J Infect Chemother 2024; 30:544-547. [PMID: 37992864 DOI: 10.1016/j.jiac.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Streptococcus suis is a pathogen of emerging zoonotic diseases and meningoencephalitis is the most frequent clinical symptom of S. suis infection in humans. Rapid diagnosis of S. suis meningoencephalitis is critical for the treatment of the disease. While the current routine microbiological tests including bacterial culture and gram staining are poorly sensitive, diagnosis of S. suis meningoencephalitis by metagenomic next-generation sequencing (mNGS) has been rarely reported. Here, we report a 52-year-old female pork food producer with a broken finger developed S. suis meningoencephalitis. After her admission, no pathogenic bacteria were detected through bacterial culture and Gram staining microscopy in the cerebrospinal fluid obtained via lumbar puncture. However, mNGS identified the presence of S. suis in the sample. mNGS is a promising diagnostic tool for rapid diagnosis of rare infectious diseases in the central nervous system.
Collapse
Affiliation(s)
- Zai-Jie Jiang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Jian-Chen Hong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Qing-Xi Tang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Bi-Wei Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Wei-Qing Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Han Xia
- Hugobiotech Co., Ltd, Beijing, China
| | - Xiang-Ping Yao
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China; Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
2
|
Hui X, Xu Z, Cao L, Liu L, Lin X, Yang Y, Sun X, Zhang Q, Jin M. HP0487 contributes to the virulence of Streptococcus suis serotype 2 by mediating bacterial adhesion and anti-phagocytosis to neutrophils. Vet Microbiol 2021; 260:109164. [PMID: 34247113 DOI: 10.1016/j.vetmic.2021.109164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 06/17/2021] [Indexed: 01/15/2023]
Abstract
Streptococcus suis serotype 2 (SS2) is an important zoonotic pathogen that poses a serious threat to human health and the swine industry. The survival and travel in the bloodstream are the important causes for SS2, contributing to bacteremia, septicemia even septic shock. However, the related mechanism remains largely unknown. Preliminary experiment demonstrated that SS2 could largely attach to the surface of neutrophils, implying that this phenomenon maybe contributed to the travel of SS2 in bloodstream and then influenced its pathogenicity. To confirm this hypothesis, using a previously established screening method that combines affinity chromatography (based on liquid chromatography-tandem mass spectrometry) with shotgun proteomics, three candidate proteins (HP0487, HP1765, and HP1111) were identified from SS2 that could interact with neutrophils. Next, by constructing the deletion mutations, we demonstrated that HP0487 of three proteins could significantly influence the adhesion of SS2 to neutrophils. Furthermore, HP0487 was shown to contribute to the anti-phagocytosis of SS2 to neutrophils and RAW264.7 cells. More importantly, the deletion of HP0487 significantly reduced lethality and bacterial loads in vivo of SS2. Thus, our findings demonstrate that HP0487 contributes to SS2 virulence by mediating the adhesion and anti-phagocytosis of SS2 to neutrophils, promoting a better understanding about the pathogenesis of SS2.
Collapse
Affiliation(s)
- Xianfeng Hui
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhongmin Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Cao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xian Lin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yong Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaomei Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, 430070, China.
| |
Collapse
|
3
|
Zhang X, Wu Z, Wang K. Diagnosis of Streptococcus suis Meningoencephalitis with metagenomic next-generation sequencing of the cerebrospinal fluid: a case report with literature review. BMC Infect Dis 2020; 20:884. [PMID: 33238913 PMCID: PMC7687824 DOI: 10.1186/s12879-020-05621-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 11/15/2020] [Indexed: 12/19/2022] Open
Abstract
Background Streptococcus suis meningoencephalitis is a zoonotic disease that mostly infects slaughterhouse workers. Rapid diagnosis of Streptococcus suis meningoencephalitis is critical for effective clinical management of this condition. However, the current diagnostic techniques are not effective for early diagnosis of this condition. To the best of our knowledge, the use of cerebrospinal fluid metagenomic next generation sequencing in the diagnosis of Streptococcus suis meningoencephalitis has been rarely reported. Case presentation Here, we report a case of Streptococcus suis meningoencephalitis in a 51-year-old female patient. The patient had a history of long-term contact with pork and had a three-centimeter-long wound on her left leg prior to disease onset. Conventional tests, including blood culture, gram staining and cerebrospinal fluid culture, did not reveal bacterial infection. However, Streptococcus suis was detected in cerebrospinal fluid using metagenomic next generation sequencing. Conclusions Metagenomic next generation sequencing is a promising approach for early diagnosis of central nervous system infections. This case report indicates that cases of clinical meningeal encephalitis of unknown cause can be diagnosed through this method.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Department of Neurology, The First People's Hospital Of Changde City, 818 Renmin Road, Changde, 415000, Hunan Province, China.
| | - Zhaoping Wu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Kai Wang
- Department of Neurology, The First People's Hospital Of Changde City, 818 Renmin Road, Changde, 415000, Hunan Province, China
| |
Collapse
|
4
|
Tools for Molecular Epidemiology of Streptococcus suis. Pathogens 2020; 9:pathogens9020081. [PMID: 32012668 PMCID: PMC7168656 DOI: 10.3390/pathogens9020081] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/04/2022] Open
Abstract
Diseases caused by Streptococcus suis are a significant economic and welfare concern in pigs as well as in humans. Several molecular methods have been applied to investigate S. suis strain diversity and identify phylogenetic groups. Multilocus sequence typing (MLST), commonly used to differentiate between S. suis strains, has been instrumental in identifying that the species is genetically highly diverse. Recent advances in whole-genome analysis have resulted in schemes permitting the classification of S. suis populations as pathogenic or non-pathogenic, or disease-associated or non-disease associated. Here, we review these and other molecular approaches that can be used for surveillance, outbreak tracking, preventative health management, effective treatment and control, as well as vaccine development, including PCR based-assays that are easy to apply in modest diagnostic settings and which allow for the rapid screening of a large number of isolates at relatively low cost, granting the identification of several major clonal complexes of the S. suis population.
Collapse
|
5
|
Liu L, Zhang Q, Xu Z, Huang J, Zhu W, Zhang A, Sun X, Jin M. HP1717 Contributes to Streptococcus suis Virulence by Inducing an Excessive Inflammatory Response and Influencing the Biosynthesis of the Capsule. Microorganisms 2019; 7:microorganisms7110522. [PMID: 31684161 PMCID: PMC6920816 DOI: 10.3390/microorganisms7110522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/24/2019] [Accepted: 11/01/2019] [Indexed: 12/31/2022] Open
Abstract
Streptococcus suis 2 (SS2) is an important zoonotic pathogen that substantially harms the swine industry and poses threats to human health. Excessive inflammation is considered to be a hallmark of SS2 infection because it is responsible for most clinical signs of SS2, especially streptococcal toxic shock-like syndrome. However, the current knowledge of SS2-induced excessive inflammation remains limited. In this study, we identified HP1717 as a novel extracellular pro-inflammatory protein in SS2 that can induce robust expression of inflammatory cytokines in RAW264.7 macrophages. Notably, the pro-inflammatory ability of HP1717 was dose-dependent and heat-sensitive, and it required the recognition of Toll-like receptor 2 (TLR2) and the phosphorylation of both extracellular signal-regulated kinases 1/2 (ERK1/2) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Further, by constructing a deletion mutant, we demonstrated that HP1717 significantly influenced the biosynthesis of the bacterial capsule, which plays a critical role in the virulence of SS2 by interfering with the ability of host immune cells to phagocytize and kill the pathogen. Indeed, the mutant strain displayed reduced resistance to whole-blood killing compared with the wild strain. Finally, murine experiments indicated that the deletion of hp1717 in SS2 reduced the lethality, pro-inflammatory activity, and bacterial loads in mice. Collectively, our data reveal HP1717 as a novel virulence-related factor of SS2 that can induce an excessive inflammatory response and significantly affect the bacterial capsule, thus expanding our understanding of the pathogenesis of S. suis.
Collapse
Affiliation(s)
- Liang Liu
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qiang Zhang
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhongmin Xu
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jingjing Huang
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Weifeng Zhu
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Anding Zhang
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Xiaomei Sun
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Meilin Jin
- Unit of Animal Infectious Diseases, National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China.
| |
Collapse
|