1
|
Ding L, Luo G, Zhou Q, Sun Y, Liao J. Comparative Mitogenome Analysis of Gerbils and the Mitogenome Phylogeny of Gerbillinae (Rodentia: Muridae). Biochem Genet 2022; 60:2226-2249. [PMID: 35314913 DOI: 10.1007/s10528-022-10213-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 02/24/2022] [Indexed: 11/02/2022]
Abstract
To enrich the mitogenomic database of Gerbillinae (Rodentia: Muridae), mitogenomes of three gerbils from different genera, Meriones tamariscinus (16,393 bp), Brachiones przewalskii (16,357 bp), and Rhombomys opimus (16,352 bp), were elaborated and compared with those of other gerbils in the present study. The three gerbil mitogenomes consisted of 2 ribosomal RNA genes, 13 protein-coding genes (PCGs), 22 transfer RNA genes, and one control region. Here, gerbil mitogenomes have shown unique characteristics in terms of base composition, codon usage, non-coding region, and the replication origin of the light strand. There was no significant correlation between the nucleotide percentage of G + C and the phylogenetic status in gerbils, and between the GC content of PCGs and the leucine count. Phylogenetic relationships of the subfamily Gerbillinae were reconstructed by 7 gerbils that represented four genera based on concatenated mitochondrial DNA data using both Bayesian Inference and Maximum Likelihood. The phylogenetic analysis indicated that M. tamariscinus was phylogenetically distant from the genus Meriones, but has a close relationship with R. opimus. B. przewalskii was closely related to the genus Meriones rather than that of R. opimus.
Collapse
Affiliation(s)
- Li Ding
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.,School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Guangjie Luo
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Quan Zhou
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yuanhai Sun
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jicheng Liao
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Sihali-Beloui O, Aroune D, Benazouz F, Hadji A, El-Aoufi S, Marco S. A hypercaloric diet induces hepatic oxidative stress, infiltration of lymphocytes, and mitochondrial reshuffle in Psammomys obesus, a murine model of insulin resistance. C R Biol 2019; 342:209-219. [PMID: 31151779 DOI: 10.1016/j.crvi.2019.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/04/2019] [Accepted: 04/21/2019] [Indexed: 02/07/2023]
Abstract
The aim of this study was to show, for the first time, the effect of a hypercaloric diet on the mitochondrial reshuffle of hepatocytes during the progression from steatosis to steatohepatitis to cirrhosis in Psammomys obesus, a typical animal model of the metabolic syndrome. Metabolic and oxidative stresses were induced by feeding the animal through a standard laboratory diet (SD) for nine months. Metabolic parameters, liver malondialdehyde (MDA) and glutathione (GSH), were evaluated. The pathological evolution was examined by histopathology and immunohistochemistry, using CD3 and CD20 antibodies. The dynamics of the mitochondrial structure was followed by transmission electron microscopy. SD induced a steatosis in this animal that evolved under the effect of oxidative and metabolic stress by the appearance of adaptive inflammation and fibrosis leading the animal to the cirrhosis stage with serious hepatocyte damage by the triggering, at first the mitochondrial fusion-fission cycles, which attempted to maintain the mitochondria intact and functional, but the hepatocellular oxidative damage was increased inducing a vicious circle of mitochondrial alteration and dysfunction and their elimination by mitophagy. P. obesus is an excellent animal model of therapeutic research that targets mitochondrial dysfunction in the progression of steatosis.
Collapse
Affiliation(s)
- Ouahiba Sihali-Beloui
- Laboratory of Biology and Physiology of Organisms/Molecular Modelling Endothlial Dysfunction and Diabetes, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene (USTHB), P.O. Box 32, El Alia, Dar El Beida, 16111 Alger, Algeria.
| | - Djamila Aroune
- Laboratory of Biology and Physiology of Organisms/Molecular Modelling Endothlial Dysfunction and Diabetes, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene (USTHB), P.O. Box 32, El Alia, Dar El Beida, 16111 Alger, Algeria
| | - Fella Benazouz
- Laboratory of Biology and Physiology of Organisms/Molecular Modelling Endothlial Dysfunction and Diabetes, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene (USTHB), P.O. Box 32, El Alia, Dar El Beida, 16111 Alger, Algeria
| | - Adile Hadji
- Pathological Anatomy and Cytology Service, Djillali Bounaama Hospital, Douera-Alger, Algeria
| | - Salima El-Aoufi
- Laboratory of Biology and Physiology of Organisms/Molecular Modelling Endothlial Dysfunction and Diabetes, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene (USTHB), P.O. Box 32, El Alia, Dar El Beida, 16111 Alger, Algeria
| | - Sergio Marco
- Institut Curie, Centre de recherche, 91405 Orsay, France; INSERM, U1196, 91405 Orsay, France; CNRS, UMR9187, 91405 Orsay, France; Université Paris-Sud, Université Paris-Saclay, 91190 Saint-Auban, France
| |
Collapse
|