1
|
Liu H, Fu Z, Zhou S, Hu J, Yang R, Yu G, Ma Z. The Complete Mitochondrial Genome of Pennella sp. Parasitizing Thunnus albacares. Front Cell Infect Microbiol 2022; 12:945152. [PMID: 35846765 PMCID: PMC9280153 DOI: 10.3389/fcimb.2022.945152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022] Open
Abstract
In the study, the parasite from the yellowfin tuna (Thunnus albacares) was separated, and morphological observation and molecular identification were carried out. Our results showed that the parasite was similar to Pennella sp. Its cephalothorax was covered by spherical to spherical non-branched nipples of almost the same size, which were very similar in shape and arrangement. A pair of slightly larger, the unbranched antenna was present on the outer margin of the small papillae-covered area. The gene sequence of COX1 with a length of 1,558 bp in the mitochondria of the parasite was 100% similar to Pennella sp. (MZ934363). The mitochondrial genome had a total length of 14,620 bp. It consisted of 36 genes (12 protein-coding, 22 transfer RNAs and 2 ribosomal RNAs) and a dummy control region, but the mitochondrial genome had no ATP8 gene. Morphological observation showed that Pennella sp. was dark red, with a convex cephalothorax, with a total length of 8.42 cm, parasitic on the dorsal side of yellowfin tuna. Pennella sp. included the cephalothorax, neck, trunk, abdomen and egg belt. This study was the first report on the mitochondrial genome of Pennella sp. The results provide basic data for further identifying the parasites of Pennella genus.
Collapse
Affiliation(s)
- Hongyan Liu
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Zhengyi Fu
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Shengjie Zhou
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Jing Hu
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Rui Yang
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Gang Yu
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- Sanya Tropical Fisheries Research Institute, Sanya, China
| | - Zhenhua Ma
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, China
- Sanya Tropical Fisheries Research Institute, Sanya, China
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- *Correspondence: Zhenhua Ma,
| |
Collapse
|
2
|
Lee YH, Lee MC, Han J, Park JC, Kim MS, Kim DH, Byeon E, Kim S, Yim JH, Lee JS. iTRAQ-based proteomic profiling, pathway analyses, and apoptotic mechanism in the Antarctic copepod Tigriopus kingsejongensis in response to ultraviolet B radiation. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109120. [PMID: 34182096 DOI: 10.1016/j.cbpc.2021.109120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/29/2022]
Abstract
iTRAQ proteomic profiling was conducted to examine the proteomic responses of the Antarctic copepod Tigriopus kingsejongensis under ultraviolet B (UVB) exposure. Of the 5507 proteins identified, 3479 proteins were annotated and classified into 25 groups using clusters of orthologous genes analysis. After exposing the T. kingsejongensis to 12 kJ/m2 UVB radiation, 77 biological processes were modulated over different time periods (0, 6, 12, 24, and 48 h) compared with the control. A Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that UVB exposure in T. kingsejongensis downregulated ribosome and glyoxylate and dicarboxylate metabolism at all time points. Furthermore, antioxidant and chaperone proteins were highly downregulated in response to UVB exposure, causing protein damage and activating apoptotic processes in the 48 h UVB exposure group. These proteomic changes show the mechanisms that underlie the detrimental effects of UVB on the cellular defense systems of the Antarctic copepod T. kingsejongensis.
Collapse
Affiliation(s)
- Young Hwan Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jeonghoon Han
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Sanghee Kim
- Division of Polar Life Science, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Joung Han Yim
- Division of Polar Life Science, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
3
|
Park JC, Lee JS. Genome-wide identification of heat shock proteins in harpacticoid, cyclopoid, and calanoid copepods: Potential application in marine ecotoxicology. MARINE POLLUTION BULLETIN 2021; 169:112545. [PMID: 34111604 DOI: 10.1016/j.marpolbul.2021.112545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Constant evolution of omics-technologies has provided access to identification of various important gene families. Recently, genome assemblies on widely used ecotoxicological model species, including rotifers and copepods have been completed and representative detoxification-related gene families have been discovered for biomarker genes. However, despite ubiquitous presence of stress-response proteins, limited information on full genome-wide report on heat shock proteins (Hsps) is available. Various studies have demonstrated multiple cellular functions of Hsps in living organisms as an important biomarker in response to abiotic and biotic stressors, however, full genome-wide identification of Hsps, particularly in aquatic invertebrates, has not been reported. This is the first study to report the entire Hsps and basal gene expression levels in three regional-specific copepods: Tigriopus japonicus and kingsejongensis, Paracyclopina nana, and Eurytemora affnis, and how each Hsp family gene is regulated at a basal level.
Collapse
Affiliation(s)
- Jun Chul Park
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
4
|
Zhang B, Havird JC, Wang E, Lv J, Xu X. Massive gene rearrangement in mitogenomes of phytoseiid mites. Int J Biol Macromol 2021; 186:33-39. [PMID: 34237359 DOI: 10.1016/j.ijbiomac.2021.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 01/14/2023]
Abstract
Mitochondrial (mt) gene sequences have been widely used to infer phylogeny in animals. The relative order of mt genes in the mitogenome can also be a useful marker for evolution, but the propensity of mt gene rearrangements vary tremendously among taxa. Ticks and mites in Acari exemplify this trend as some families retain the ancestral arthropod gene order, while others show highly divergent gene orders. Mites in Phytoseiidae, many of which are effective biological control agents, show some of the most divergent gene orders. However, the diversity of mitogenome order within this family is little known. We thus sequenced three mt genomes of phytoseiid mites from two of the most speciose genera: Amblyseius swirskii (Athias-Henriot), Amblyseius tsugawai (Ehara) and Neoseiulus womersleyi (Schicha). We find differences in mt GC skew and nucleotide composition, especially between N. womersleyi and the two Amblyseius species. Each species within Phytoseiidae (including three previously available sequences) present a unique gene order. Phytoseiid mitogenomes show some of the highest numbers of breakpoints when compared to the ancestral arthropod order (up to 33), as well as high numbers of breakpoints within the family (14-30). This suggests a history of massive, ongoing mitogenome rearrangements in the family. Phylogenetic analyses of mt sequences confirm that the degree of gene rearrangements follows phylogenetic relatedness. We discuss possible causes for the high degree of mt gene rearrangement within phytoseiid mites as well as selection in the mt and nuclear genome tied to the independent evolution of many diverse feeding strategies in the family. Finally, we suggest N. womersleyi should be used instead of the synonym Amblyseius pseudolongispinosus.
Collapse
Affiliation(s)
- Bo Zhang
- Laboratory of Predatory Mites, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Justin C Havird
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Endong Wang
- Laboratory of Predatory Mites, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jiale Lv
- Laboratory of Predatory Mites, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xuenong Xu
- Laboratory of Predatory Mites, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
5
|
Lee MC, Choi BS, Kim MS, Yoon DS, Park JC, Kim S, Lee JS. An improved genome assembly and annotation of the Antarctic copepod Tigriopus kingsejongensis and comparison of fatty acid metabolism between T. kingsejongensis and the temperate copepod T. japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 35:100703. [PMID: 32563028 DOI: 10.1016/j.cbd.2020.100703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 01/05/2023]
Abstract
Copepods in the genus Tigriopus are widely distributed in the intertidal zone worldwide. To assess differences in fatty acid (FA) metabolism among congeneric species in this genus inhabiting polar and temperate environments, we analyzed and compared FA profiles of the Antarctic copepod Tigriopus kingsejongensis and the temperate copepod T. japonicus. Higher amounts of total FAs were found in the Antarctic copepod T. kingsejongensis than the temperate copepod T. japonicus under administration of the identical amount of Tetraselmis suecica. To determine the genomic basis for this, we identified fatty acid metabolism-related genes in an improved genome of T. kingsejongensis. The total length of the assembled genome was approximately 338 Mb with N50 = 1.473 Mb, 938 scaffolds, and a complete Benchmarking Universal Single-Copy Orthologs value of 95.8%. A total of 25,470 genes were annotated using newly established pipeline. We identified eight elongation of very long-chain fatty acid protein (Elovl) genes and nine fatty acid desaturase (Fad) genes in the genome of T. kingsejongensis. In addition, fatty acid profiling suggested that the duplicated Δ5/6 desaturase gene in T. kingsejongensis is likely to play an essential role in synthesis of different FAs in T. kingsejongensis to those in T. japonicus. However, further experimental research is required to validate our in silico findings. This study provides a better understanding of fatty acid metabolism in the Antarctic copepod T. kingsejongensis.
Collapse
Affiliation(s)
- Min-Chul Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | | | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Deok-Seo Yoon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Sanghee Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
6
|
Choi BS, Han J, Hwang DS, Souissi S, Hagiwara A, Lee JS. Complete mitochondrial genome of the calanoid copepod Eurytemora affinis (Calanoida, Temoridae). MITOCHONDRIAL DNA PART B-RESOURCES 2019; 4:2731-2733. [PMID: 33365704 PMCID: PMC7706584 DOI: 10.1080/23802359.2019.1644558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The complete mitochondrial genome was sequenced from the calanoid copepod Eurytemora affinis. The sequenced total genome size was 18,553 bp. The mitochondrial genome of E. affinis has 13 protein-coding genes (PCGs), two rRNAs, and 22 tRNAs. Of 13 PCGs, ND1, ND5, and ATP6 genes had incomplete stop codons TA–, T—, and TA–, respectively. Furthermore, the stop codons of the remaining eleven PCGs were TAG or TAA while the start codon of 13 PCGs was ATG (Cytb, ATP8, ATP6, and CO3 genes), ATT (CO1, ND2, ND3, ND4L, ND5, and ND6 genes), and ATA (ND1, ND4, and CO2 genes), respectively. The ratio of A + T and G + C nucleotides of 13 PCGs of E. affinis mitogenome showed 63.9% and 36.1%, respectively while those ratio of the entire sequences were 65.5% and 34.5%, respectively.
Collapse
Affiliation(s)
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, South Korea
| | - Dae-Sik Hwang
- Research Institute of Environmental Health and Safety, Bucheon, South Korea
| | - Sami Souissi
- CNRS, University of Lille, Lille, France.,Laboratoire d'Oceanologie et de Geosciences, Université du Littoral Côte d'Opale, Wimereux, France
| | - Atsushi Hagiwara
- Institute of Integrated Science and Technology, Nagasaki University, Nagasaki, Japan.,Organization for Marine Science and Technology, Nagasaki University, Nagasaki, Japan
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|