1
|
Fu CN, Wicke S, Zhu AD, Li DZ, Gao LM. Distinctive plastome evolution in carnivorous angiosperms. BMC PLANT BIOLOGY 2023; 23:660. [PMID: 38124058 PMCID: PMC10731798 DOI: 10.1186/s12870-023-04682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Independent origins of carnivory in multiple angiosperm families are fabulous examples of convergent evolution using a diverse array of life forms and habitats. Previous studies have indicated that carnivorous plants have distinct evolutionary trajectories of plastid genome (plastome) compared to their non-carnivorous relatives, yet the extent and general characteristics remain elusive. RESULTS We compared plastomes from 9 out of 13 carnivorous families and their non-carnivorous relatives to assess carnivory-associated evolutionary patterns. We identified inversions in all sampled Droseraceae species and four species of Utricularia, Pinguicula, Darlingtonia and Triphyophyllum. A few carnivores showed distinct shifts in inverted repeat boundaries and the overall repeat contents. Many ndh genes, along with some other genes, were independently lost in several carnivorous lineages. We detected significant substitution rate variations in most sampled carnivorous lineages. A significant overall substitution rate acceleration characterizes the two largest carnivorous lineages of Droseraceae and Lentibulariaceae. We also observe moderate substitution rates acceleration in many genes of Cephalotus follicularis, Roridula gorgonias, and Drosophyllum lusitanicum. However, only a few genes exhibit significant relaxed selection. CONCLUSION Our results indicate that the carnivory of plants have different effects on plastome evolution across carnivorous lineages. The complex mechanism under carnivorous habitats may have resulted in distinctive plastome evolution with conserved plastome in the Brocchinia hechtioides to strongly reconfigured plastomes structures in Droseraceae. Organic carbon obtained from prey and the efficiency of utilizing prey-derived nutrients might constitute possible explanation.
Collapse
Affiliation(s)
- Chao-Nan Fu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, Yunnan, China
| | - Susann Wicke
- Institute for Biology, Humboldt-University Berlin, Berlin, Germany
- Späth-Arboretum of the Humboldt-University Berlin, Berlin, Germany
| | - An-Dan Zhu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - De-Zhu Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, Yunnan, China.
| |
Collapse
|
2
|
Baldwin E, McNair M, Leebens-Mack J. Rampant chloroplast capture in Sarracenia revealed by plastome phylogeny. FRONTIERS IN PLANT SCIENCE 2023; 14:1237749. [PMID: 37711293 PMCID: PMC10497973 DOI: 10.3389/fpls.2023.1237749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/20/2023] [Indexed: 09/16/2023]
Abstract
Introgression can produce novel genetic variation in organisms that hybridize. Sympatric species pairs in the carnivorous plant genus Sarracenia L. frequently hybridize, and all known hybrids are fertile. Despite being a desirable system for studying the evolutionary consequences of hybridization, the extent to which introgression occurs in the genus is limited to a few species in only two field sites. Previous phylogenomic analysis of Sarracenia estimated a highly resolved species tree from 199 nuclear genes, but revealed a plastid genome that is highly discordant with the species tree. Such cytonuclear discordance could be caused by chloroplast introgression (i.e. chloroplast capture) or incomplete lineage sorting (ILS). To better understand the extent to which introgression is occurring in Sarracenia, the chloroplast capture and ILS hypotheses were formally evaluated. Plastomes were assembled de-novo from sequencing reads generated from 17 individuals in addition to reads obtained from the previous study. Assemblies of 14 whole plastomes were generated and annotated, and the remaining fragmented assemblies were scaffolded to these whole-plastome assemblies. Coding sequence from 79 homologous genes were aligned and concatenated for maximum-likelihood phylogeny estimation. The plastome tree is extremely discordant with the published species tree. Plastome trees were simulated under the coalescent and tree distance from the species tree was calculated to generate a null distribution of discordance that is expected under ILS alone. A t-test rejected the null hypothesis that ILS could cause the level of discordance seen in the plastome tree, suggesting that chloroplast capture must be invoked to explain the discordance. Due to the extreme level of discordance in the plastome tree, it is likely that chloroplast capture has been common in the evolutionary history of Sarracenia.
Collapse
Affiliation(s)
- Ethan Baldwin
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Mason McNair
- Department of Plant & Environmental Science, Clemson University, Florence, SC, United States
| | - Jim Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
3
|
Baharin A, Ting TY, Goh HH. Omics Approaches in Uncovering Molecular Evolution and Physiology of Botanical Carnivory. PLANTS (BASEL, SWITZERLAND) 2023; 12:408. [PMID: 36679121 PMCID: PMC9867145 DOI: 10.3390/plants12020408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Systems biology has been increasingly applied with multiple omics for a holistic comprehension of complex biological systems beyond the reductionist approach that focuses on individual molecules. Different high-throughput omics approaches, including genomics, transcriptomics, metagenomics, proteomics, and metabolomics have been implemented to study the molecular mechanisms of botanical carnivory. This covers almost all orders of carnivorous plants, namely Caryophyllales, Ericales, Lamiales, and Oxalidales, except Poales. Studies using single-omics or integrated multi-omics elucidate the compositional changes in nucleic acids, proteins, and metabolites. The omics studies on carnivorous plants have led to insights into the carnivory origin and evolution, such as prey capture and digestion as well as the physiological adaptations of trap organ formation. Our understandings of botanical carnivory are further enhanced by the discoveries of digestive enzymes and transporter proteins that aid in efficient nutrient sequestration alongside dynamic molecular responses to prey. Metagenomics studies revealed the mutualistic relationships between microbes and carnivorous plants. Lastly, in silico analysis accelerated the functional characterization of new molecules from carnivorous plants. These studies have provided invaluable molecular data for systems understanding of carnivorous plants. More studies are needed to cover the diverse species with convergent evolution of botanical carnivory.
Collapse
|
4
|
Adamec L, Matušíková I, Pavlovič A. Recent ecophysiological, biochemical and evolutional insights into plant carnivory. ANNALS OF BOTANY 2021; 128:241-259. [PMID: 34111238 PMCID: PMC8389183 DOI: 10.1093/aob/mcab071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/07/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Carnivorous plants are an ecological group of approx. 810 vascular species which capture and digest animal prey, absorb prey-derived nutrients and utilize them to enhance their growth and development. Extant carnivorous plants have evolved in at least ten independent lineages, and their adaptive traits represent an example of structural and functional convergence. Plant carnivory is a result of complex adaptations to mostly nutrient-poor, wet and sunny habitats when the benefits of carnivory exceed the costs. With a boost in interest and extensive research in recent years, many aspects of these adaptations have been clarified (at least partly), but many remain unknown. SCOPE We provide some of the most recent insights into substantial ecophysiological, biochemical and evolutional particulars of plant carnivory from the functional viewpoint. We focus on those processes and traits in carnivorous plants associated with their ecological characterization, mineral nutrition, cost-benefit relationships, functioning of digestive enzymes and regulation of the hunting cycle in traps. We elucidate mechanisms by which uptake of prey-derived nutrients leads to stimulation of photosynthesis and root nutrient uptake. CONCLUSIONS Utilization of prey-derived mineral (mainly N and P) and organic nutrients is highly beneficial for plants and increases the photosynthetic rate in leaves as a prerequisite for faster plant growth. Whole-genome and tandem gene duplications brought gene material for diversification into carnivorous functions and enabled recruitment of defence-related genes. Possible mechanisms for the evolution of digestive enzymes are summarized, and a comprehensive picture on the biochemistry and regulation of prey decomposition and prey-derived nutrient uptake is provided.
Collapse
Affiliation(s)
- Lubomír Adamec
- Institute of Botany of the Czech Academy of Sciences, Dukelská 135, CZ-379 01 Třeboň, Czech Republic
| | - Ildikó Matušíková
- University of Ss. Cyril and Methodius, Department of Ecochemistry and Radioecology, J. Herdu 2, SK-917 01 Trnava, Slovak Republic
| | - Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
- For correspondence. E-mail
| |
Collapse
|
5
|
Huang YZ, Zhuang LB, Zhai JW, Lin WJ. The complete chloroplast genome sequence of Dendrobium zhenghuoense (Orchidaceae). Mitochondrial DNA B Resour 2019; 4:3326-3327. [PMID: 33365977 PMCID: PMC7707348 DOI: 10.1080/23802359.2019.1669086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Dendrobium zhenghuoense is very distinctive among Orchidaceae species with yellowish-green flowers and short peduncle. In this study, we reported the complete chloroplast genome of D. zhenghuoense. Present study suggests that genomic information of D. zhenghuoense would have special importance in conservation and molecular phylogenetic studies on Orchidaceae. The circle genome of D. zhenghuoense was 148,431 bp in length with 37.0% GC content and a large single-copy (LSC) region of 84,167 bp, a small single-copy (SSC) region of 12,588 bp, which were separated by a pair of inverted repeat (IR) region of 25,838 bp. The genome contained 130 genes, including 75 protein-coding genes, 38 tRNA genes and 8 rRNA genes. The maximum likelihood phylogenetic analysis indicated that D. zhenghuoense was the sister to the rest 11 species of Dendrobium tested.
Collapse
Affiliation(s)
| | | | - Jun-Wen Zhai
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wen-Jun Lin
- Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|