1
|
Yu F, Shen Y, Chen S, Fan H, Pang Y, Liu M, Peng J, Pei X, Liu X. Analysis of the Genomic Sequences and Metabolites of Bacillus velezensis YA215. Biochem Genet 2024:10.1007/s10528-024-10710-y. [PMID: 38386213 DOI: 10.1007/s10528-024-10710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
Discovering more novel antimicrobial compounds has become a keen research problem. In this study, YA215 genome was sequenced by the Illumina HiSeq + PacBio sequencing platform. Genome assembly was performed by Unicycler software and the gene clusters responsible for secondary metabolite biosynthesis were predicted by antiSMASH. The genome comprised 3976514 bp and had a 46.56% G + C content. 3809 coding DNA sequences, 27 rRNAs, 86 tRNAs genes, and 79 sRNA were predicted. Strain YA215 was re-identified as Bacillus velezensis based on ANI and OrthoANI analysis. In the COG database, 23 functional groups from 3090 annotations were predicted. In the GO database, 2654 annotations were predicted. 2486 KEGG annotations linked 41 metabolic pathways. Glycosyl transferases, polysaccharide lyases, auxiliary activities, glycoside hydrolases, carbohydrate esterases, and carbohydrate-binding modules were predicted among the 127 annotations in the CAZy database. AntiSMASH analysis predicted that B. velezensis YA215 boasted 13 gene clusters involved in synthesis of antimicrobial secondary metabolites including surfactin, fengycin, macrolactin H, bacillaene, difficidin, bacillibactin, bacilysin, and plantazolicin. Three of the gene clusters (gene cluster 5, gene cluster 9, and gene cluster 10) have the potential to synthesize unknown compounds. The research underscore the considerable potential of secondary metabolites, identified in the genomic composition of B. velezensis YA215, as versatile antibacterial agents with a broad spectrum of activity against pathogenic bacteria.
Collapse
Affiliation(s)
- FuTian Yu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - YuanYuan Shen
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - ShangLi Chen
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - HeLiang Fan
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - YiYang Pang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - MingYuan Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - JingJing Peng
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - XiaoDong Pei
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - XiaoLing Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning, China.
| |
Collapse
|