1
|
Yılmaz E, Mann DG, Gastineau R, Trobajo R, Solak CN, Górecka E, Turmel M, Lemieux C, Ertorun N, Witkowski A. Description of Naviculavanseea sp. nov. (Naviculales, Naviculaceae), a new species of diatom from the highly alkaline Lake Van (Republic of Türkiye) with complete characterisation of its organellar genomes and multigene phylogeny. PHYTOKEYS 2024; 241:27-48. [PMID: 38628637 PMCID: PMC11019260 DOI: 10.3897/phytokeys.241.118903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/19/2024] [Indexed: 04/19/2024]
Abstract
The current article describes Naviculavanseeasp. nov., a new species of diatom from Lake Van, a highly alkaline lake in Eastern Anatolia (Türkiye). The description is based on light and scanning electron microscopy performed on two monoclonal cultures. The complete nuclear rRNA clusters and plastid genomes have been sequenced for these two strains and the complete mitogenome for one of them. The plastome of both strains shows the probable loss of a functional ycf35 gene. They also exhibit two IB4 group I introns in their rrl, each encoding for a putative LAGLIDADG homing endonuclease, with the first L1917 IB4 intron reported amongst diatoms. The Maximum Likelihood phylogeny inferred from a concatenated alignment of 18S, rbcL and psbC distinguishes N.vanseea sp. nov. from the morphologically similar species Naviculacincta and Naviculamicrodigitoradiata.
Collapse
Affiliation(s)
- Elif Yılmaz
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16A, PL70–383 Poland
| | - David G. Mann
- Royal Botanic Garden Edinburgh, Edinburgh EH3 5LR, Scotland, UK
| | - Romain Gastineau
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16A, PL70–383 Poland
| | - Rosa Trobajo
- Marine and Continental Waters, Institute for Food and Agricultural Research and Technology (IRTA), Crta de Poble Nou Km 5.5, E-43540 La Ràpita, Catalunya, Spain
| | - Cüneyt Nadir Solak
- Department of Biology, Faculty of Science & Art, Dumlupınar University, 43000 Kütahya, Türkiye
| | - Ewa Górecka
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16A, PL70–383 Poland
| | - Monique Turmel
- Département de biochimie, de microbiologie et de bio-Informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Claude Lemieux
- Département de biochimie, de microbiologie et de bio-Informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Nesil Ertorun
- Department of Biology, Science Faculty, Eskişehir Technical University, 26000 Eskişehir, Türkiye
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16A, PL70–383 Poland
- Deceased
| |
Collapse
|
2
|
Du F, Li Y, Xu K. Phylogeny and Evolution of Cocconeiopsis (Cocconeidaceae) as Revealed by Complete Chloroplast and Mitochondrial Genomes. Int J Mol Sci 2023; 25:266. [PMID: 38203438 PMCID: PMC10778710 DOI: 10.3390/ijms25010266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The genus Cocconeiopsis was separated from Navicula, but its systematic position is in debate. We sequenced the complete chloroplast and mitochondrial genome of Cocconeidaceae for the first time with Cocconeiopsis kantsiensis and investigated its phylogeny and evolutionary history. Results showed that the plastid genome was 140,415 bp long with 167 genes. The mitochondrial genome was 43,732 bp long with 66 genes. Comparative analysis showed that the plastid genome structure of C. kantsiensis was most similar to those of three Navicula species and Halamphora americana, and its size was significantly smaller than that of a monoraphid species. Its mitochondrial genome was similar to that of related species except for Phaeodactylum tricornutum. The multigene phylogeny reconstruction showed that Cocconeiopsis was sister to Didymosphenia but distant from Naviculaceae. The two-gene phylogenetic analysis containing 255 species showed Cocconeiopsis was sister to Cocconeis, and distant from Naviculaceae as well. Divergence time estimation indicates the common ancestor of cocconeid species occurred about 62.8 Ma and Cocconeiopsis diverged with monoraphid Cocconeis about 58.9 Ma. Our results support the assignment of Cocconeiopsis to Cocconeidaceae and that monoraphid cocconeids were likely evolved from the lineage of Cocconeiopsis.
Collapse
Affiliation(s)
- Feichao Du
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (F.D.); (Y.L.)
- Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhang Li
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (F.D.); (Y.L.)
- Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Kuidong Xu
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (F.D.); (Y.L.)
- Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
3
|
Genetic Diversity and Geographical Distribution of the Red Tide Species Coscinodiscus granii Revealed Using a High-Resolution Molecular Marker. Microorganisms 2022; 10:microorganisms10102028. [PMID: 36296304 PMCID: PMC9612147 DOI: 10.3390/microorganisms10102028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
Diatoms are responsible for approximately 40% of the global primary photosynthetic production and account for up to 20% of global carbon fixation. Coscinodiscus granii is a red tide forming species of the phylum Bacillariophyta that has been detected in a wide range of coastal regions, suggesting the possibility of the existence of high genetic diversity with differential adaptation. Common molecular markers including 18S rDNA, 16S rDNA, ITS, cox1, and rbcL do not provide sufficient resolution for distinguishing intra-species genetic diversity, hindering in-depth research on intra-species genetic diversity and their spatial and temporal dynamics. In this project, we aimed to develop molecular markers with high resolution and specificity for C. granii, attempting to identify different taxa of this species, which will set up a stage for subsequent functional assays. Comparative genomics analysis of the mtDNAs of C. granii strains identified a genomic region with high genomic variations, which was used to guide the development of a molecular marker with high resolution and high specificity. This new molecular marker, which was named cgmt1 (C. granii mitochondrial 1), was 376 bp in size and differentiated C. granii samples collected in coastal regions of China into three different clades. Preliminary analysis of field samples collected in various coastal regions in China revealed that C. granii clades were almost exclusively found in the Bohai Sea and the north Yellow Sea. This newly developed molecular marker cgmt1 could be used for tracking intra-species genetic diversity and biogeographic distribution of C. granii in different ecosystems.
Collapse
|
4
|
Wang Y, Liu S, Wang J, Yao Y, Chen Y, Xu Q, Zhao Z, Chen N. Diatom Biodiversity and Speciation Revealed by Comparative Analysis of Mitochondrial Genomes. FRONTIERS IN PLANT SCIENCE 2022; 13:749982. [PMID: 35401648 PMCID: PMC8987724 DOI: 10.3389/fpls.2022.749982] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Diatoms (Bacillariophyta) constitute one of the most diverse and ecologically significant groups of phytoplankton, comprising 100,000-200,000 species in three classes Bacillariophyceae, Mediophyceae, and Coscinodiscophyceae. However, due to the limited resolution of common molecular markers including 18S rDNA, 28S rDNA, ITS, rbcL, and cox1, diatom biodiversity has not been adequately ascertained. Organelle genomes including mitochondrial genomes (mtDNAs) have been proposed to be "super barcodes" for distinguishing diatom species because of their rich genomic content, and the rapid progress of DNA sequencing technologies that has made it possible to construct mtDNAs with increasing throughout and decreasing cost. Here, we constructed complete mtDNAs of 15 diatom species including five Coscinodiscophyceae species (Guinardia delicatula, Guinardia striata, Stephanopyxis turris, Paralia sulcata, and Actinocyclus sp.), four Mediophyceae species (Hemiaulus sinensis, Odontella aurita var. minima, Lithodesmioides sp., and Helicotheca tamesis), and six Bacillariophyceae species (Nitzschia ovalis, Nitzschia sp., Nitzschia traheaformis, Cylindrotheca closterium, Haslea tsukamotoi, and Pleurosigma sp.) to test the practicality of using mtDNAs as super barcodes. We found that mtDNAs have much higher resolution compared to common molecular markers as expected. Comparative analysis of mtDNAs also suggested that mtDNAs are valuable in evolutionary studies by revealing extensive genome rearrangement events with gene duplications, gene losses, and gains and losses of introns. Synteny analyses of mtDNAs uncovered high conservation among species within an order, but extensive rearrangements including translocations and/or inversions between species of different orders within a class. Duplication of cox1 was discovered for the first time in diatoms in Nitzschia traheaformis and Haslea tsukamotoi. Molecular dating analysis revealed that the three diatom classes split 100 Mya and many diatom species appeared since 50 Mya. In conclusion, more diatom mtDNAs representing different orders will play great dividends to explore biodiversity and speciation of diatoms in different ecological regions.
Collapse
Affiliation(s)
- Yichao Wang
- Chinese Academy of Sciences Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Planetary and Earth Sciences, University of Chinese Academy of Sciences, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Shuya Liu
- Chinese Academy of Sciences Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jing Wang
- Chinese Academy of Sciences Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yanxin Yao
- Chinese Academy of Sciences Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Planetary and Earth Sciences, University of Chinese Academy of Sciences, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yang Chen
- Chinese Academy of Sciences Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Planetary and Earth Sciences, University of Chinese Academy of Sciences, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Qing Xu
- Chinese Academy of Sciences Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zengxia Zhao
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Nansheng Chen
- Chinese Academy of Sciences Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
5
|
Kim D, Lee J, Cho CH, Kim EJ, Bhattacharya D, Yoon HS. Group II intron and repeat-rich red algal mitochondrial genomes demonstrate the dynamic recent history of autocatalytic RNAs. BMC Biol 2022; 20:2. [PMID: 34996446 PMCID: PMC8742464 DOI: 10.1186/s12915-021-01200-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/29/2021] [Indexed: 11/10/2022] Open
Abstract
Background Group II introns are mobile genetic elements that can insert at specific target sequences, however, their origins are often challenging to reconstruct because of rapid sequence decay following invasion and spread into different sites. To advance understanding of group II intron spread, we studied the intron-rich mitochondrial genome (mitogenome) in the unicellular red alga, Porphyridium. Results Analysis of mitogenomes in three closely related species in this genus revealed they were 3–6-fold larger in size (56–132 kbp) than in other red algae, that have genomes of size 21–43 kbp. This discrepancy is explained by two factors, group II intron invasion and expansion of repeated sequences in large intergenic regions. Phylogenetic analysis demonstrates that many mitogenome group II intron families are specific to Porphyridium, whereas others are closely related to sequences in fungi and in the red alga-derived plastids of stramenopiles. Network analysis of intron-encoded proteins (IEPs) shows a clear link between plastid and mitochondrial IEPs in distantly related species, with both groups associated with prokaryotic sequences. Conclusion Our analysis of group II introns in Porphyridium mitogenomes demonstrates the dynamic nature of group II intron evolution, strongly supports the lateral movement of group II introns among diverse eukaryotes, and reveals their ability to proliferate, once integrated in mitochondrial DNA. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01200-3.
Collapse
Affiliation(s)
- Dongseok Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - JunMo Lee
- Department of Oceanography, Kyungpook National University, Daegu, 41566, South Korea
| | - Chung Hyun Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Eun Jeung Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea.
| |
Collapse
|
6
|
Solak CN, Gastineau R, Lemieux C, Turmel M, Gorecka E, Trobajo R, Rybak M, Yılmaz E, Witkowski A. Nitzschia anatoliensis sp. nov., a cryptic diatom species from the highly alkaline Van Lake (Turkey). PeerJ 2021; 9:e12220. [PMID: 34733585 PMCID: PMC8544256 DOI: 10.7717/peerj.12220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/06/2021] [Indexed: 12/02/2022] Open
Abstract
In this article we describe Nitzschia anatoliensis Górecka, Gastineau & Solak sp. nov., an example of a diatom species inhabiting extreme habitats. The new species has been isolated and successfully grown from the highly alkaline Van Lake in East Turkey. The description is based on morphology (light and scanning electron microscopy), the sequencing of its organellar genomes and several molecular phylogenies. This species could easily be overlooked because of its extreme similarity to Nitzschia aurariae but molecular phylogenies indicate that they are only distantly related. Furthermore, molecular data suggest that N. anatoliensis may occur in several alkaline lakes of Asia Minor and Siberia, but was previously misidentified as Nitzschia communis. It also revealed the very close genetic proximity between N. anatoliensis and the endosymbiont of the dinotom Kryptoperidinium foliaceum, providing additional clues on what might have been the original species of diatoms to enter symbiosis.
Collapse
Affiliation(s)
- Cüneyt Nadir Solak
- Department of Biology, Arts and Science Faculty, Dumlupınar University, Kütahya, Turkey
| | - Romain Gastineau
- Institute of Marine and Environmental Sciences, University of Szczecin, Szczecin, Poland
| | - Claude Lemieux
- Département de biochimie, de microbiologie et de bio-informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
| | - Monique Turmel
- Département de biochimie, de microbiologie et de bio-informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
| | - Ewa Gorecka
- Institute of Marine and Environmental Sciences, University of Szczecin, Szczecin, Poland
| | - Rosa Trobajo
- Marine and Continental Waters Program, IRTA-Institute of Agriculture and Food Research and Technology, Sant Carles de la Ràpita, Catalonia, Spain
| | - Mateusz Rybak
- Department of Agroecology and Forest Utilization, Institute of Agricultural Sciences, Land Management and Environmental Protection, University of Rzeszów, Rzeszów, Poland
| | - Elif Yılmaz
- Department of Biology, Arts and Science Faculty, Dumlupınar University, Kütahya, Turkey.,Institute of Marine and Environmental Sciences, University of Szczecin, Szczecin, Poland
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Szczecin, Poland
| |
Collapse
|
7
|
Liu S, Wang Y, Xu Q, Zhang M, Chen N. Comparative analysis of full-length mitochondrial genomes of five Skeletonema species reveals conserved genome organization and recent speciation. BMC Genomics 2021; 22:746. [PMID: 34654361 PMCID: PMC8520197 DOI: 10.1186/s12864-021-07999-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 09/03/2021] [Indexed: 12/05/2022] Open
Abstract
Background Skeletonema species are prominent primary producers, some of which can also cause massive harmful algal blooms (HABs) in coastal waters under specific environmental conditions. Nevertheless, genomic information of Skeletonema species is currently limited, hindering advanced research on their role as primary producers and as HAB species. Mitochondrial genome (mtDNA) has been extensively used as “super barcode” in the phylogenetic analyses and comparative genomic analyses. However, of the 21 accepted Skeletonema species, full-length mtDNAs are currently available only for a single species, S. marinoi. Results In this study, we constructed full-length mtDNAs for six strains of five Skeletonema species, including S. marinoi, S. tropicum, S. grevillei, S. pseudocostatum and S. costatum (with two strains), which were isolated from coastal waters in China. The mtDNAs of all of these Skeletonema species were compact with short intergenic regions, no introns, and no repeat regions. Comparative analyses of these Skeletonema mtDNAs revealed high conservation, with a few discrete regions of high variations, some of which could be used as molecular markers for distinguishing Skeletonema species and for tracking the biogeographic distribution of these species with high resolution and specificity. We estimated divergence times among these Skeletonema species using 34 mtDNAs genes with fossil data as calibration point in PAML, which revealed that the Skeletonema species formed the independent clade diverging from Thalassiosira species approximately 48.30 Mya. Conclusions The availability of mtDNAs of five Skeletonema species provided valuable reference sequences for further evolutionary studies including speciation time estimation and comparative genomic analysis among diatom species. Divergent regions could be used as molecular markers for tracking different Skeletonema species in the fields of coastal regions. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07999-z.
Collapse
Affiliation(s)
- Shuya Liu
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yichao Wang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.,University of Chinese Academy of Sciences, Beijing, 10039, China
| | - Qing Xu
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengjia Zhang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.,University of Chinese Academy of Sciences, Beijing, 10039, China
| | - Nansheng Chen
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China. .,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China. .,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China. .,Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.
| |
Collapse
|
8
|
Górecka E, Gastineau R, Davidovich NA, Davidovich OI, Ashworth MP, Sabir JSM, Lemieux C, Turmel M, Witkowski A. Mitochondrial and Plastid Genomes of the Monoraphid Diatom Schizostauron trachyderma. Int J Mol Sci 2021; 22:ijms222011139. [PMID: 34681800 PMCID: PMC8541233 DOI: 10.3390/ijms222011139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
We provide for the first time the complete plastid and mitochondrial genomes of a monoraphid diatom: Schizostauron trachyderma. The mitogenome is 41,957 bp in size and displays two group II introns in the cox1 gene. The 187,029 bp plastid genome features the typical quadripartite architecture of diatom genomes. It contains a group II intron in the petB gene that overlaps the large single-copy and the inverted repeat region. There is also a group IB4 intron encoding a putative LAGLIDADG homing endonuclease in the rnl gene. The multigene phylogenies conducted provide more evidence of the proximity between S. trachyderma and fistula-bearing species of biraphid diatoms.
Collapse
Affiliation(s)
- Ewa Górecka
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland;
- Correspondence: (E.G.); (R.G.)
| | - Romain Gastineau
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland;
- Correspondence: (E.G.); (R.G.)
| | - Nikolai A. Davidovich
- Karadag Scientific Station—Natural Reserve of the Russian Academy of Sciences, p/o Kurortnoe, Feodosiya, 98188 Crimea, Russia; (N.A.D.); (O.I.D.)
| | - Olga I. Davidovich
- Karadag Scientific Station—Natural Reserve of the Russian Academy of Sciences, p/o Kurortnoe, Feodosiya, 98188 Crimea, Russia; (N.A.D.); (O.I.D.)
| | - Matt P. Ashworth
- Department of Molecular Biosciences, NHB, University of Texas at Austin, Austin, TX 78712, USA;
| | - Jamal S. M. Sabir
- Genomics and Biotechnology Research Group, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Claude Lemieux
- Département de Biochimie, Microbiologie et Bio-Informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada; (C.L.); (M.T.)
| | - Monique Turmel
- Département de Biochimie, Microbiologie et Bio-Informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada; (C.L.); (M.T.)
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland;
| |
Collapse
|
9
|
Oliver A, Podell S, Pinowska A, Traller JC, Smith SR, McClure R, Beliaev A, Bohutskyi P, Hill EA, Rabines A, Zheng H, Allen LZ, Kuo A, Grigoriev IV, Allen AE, Hazlebeck D, Allen EE. Diploid genomic architecture of Nitzschia inconspicua, an elite biomass production diatom. Sci Rep 2021; 11:15592. [PMID: 34341414 PMCID: PMC8329260 DOI: 10.1038/s41598-021-95106-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/14/2021] [Indexed: 01/13/2023] Open
Abstract
A near-complete diploid nuclear genome and accompanying circular mitochondrial and chloroplast genomes have been assembled from the elite commercial diatom species Nitzschia inconspicua. The 50 Mbp haploid size of the nuclear genome is nearly double that of model diatom Phaeodactylum tricornutum, but 30% smaller than closer relative Fragilariopsis cylindrus. Diploid assembly, which was facilitated by low levels of allelic heterozygosity (2.7%), included 14 candidate chromosome pairs composed of long, syntenic contigs, covering 93% of the total assembly. Telomeric ends were capped with an unusual 12-mer, G-rich, degenerate repeat sequence. Predicted proteins were highly enriched in strain-specific marker domains associated with cell-surface adhesion, biofilm formation, and raphe system gliding motility. Expanded species-specific families of carbonic anhydrases suggest potential enhancement of carbon concentration efficiency, and duplicated glycolysis and fatty acid synthesis pathways across cytosolic and organellar compartments may enhance peak metabolic output, contributing to competitive success over other organisms in mixed cultures. The N. inconspicua genome delivers a robust new reference for future functional and transcriptomic studies to illuminate the physiology of benthic pennate diatoms and harness their unique adaptations to support commercial algae biomass and bioproduct production.
Collapse
Affiliation(s)
- Aaron Oliver
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
| | - Sheila Podell
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA.
| | | | | | - Sarah R Smith
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA, USA
| | - Ryan McClure
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Alex Beliaev
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Pavlo Bohutskyi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Eric A Hill
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ariel Rabines
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA, USA
| | - Hong Zheng
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA, USA
| | - Lisa Zeigler Allen
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA, USA
| | - Alan Kuo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Andrew E Allen
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA, USA
| | | | - Eric E Allen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA. .,Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA. .,Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
10
|
Huang H, Song H, Zhao Z, Liu F, Chen N. Complete mitochondrial genome of Coscinodiscus granii (Coscinodiscophyceae, Bacillariophyta). MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:2332-2334. [PMID: 34345688 PMCID: PMC8284155 DOI: 10.1080/23802359.2021.1951135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coscinodiscus is a genus common in marine phytoplankton, with some species thought to have a significant negative ecological impact. However, the availability of their genome sequences is rather limited. Here, we assembled and annotated the first complete mitochondrial genome (mtDNA) of the species Coscinodiscus granii L.F.Gough 1905, as part of our efforts to gain a better understanding of the genetic characteristics of Coscinodiscus taxa at a genomic level. The circular mtDNA was 34,970 bp in length and encoded 60 genes, including 32 protein-coding genes (PCGs), 24 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes, and two conserved open reading frames (orfs). The overall GC content of C. granii mtDNA was 24.30%, which was slightly lower than that of C. wailesii (25.00%), the first species in the genus Coscinodiscus whose mtDNA has been reported, and higher than that of Melosira undulata (21.60%), the first species in the class Coscinodiscophyceae whose mtDNA has been reported. As expected for congeneric species, phylogenetic analysis using concatenated amino acid sequences of 27 shared PCGs suggested that C. granii has a closer evolutionary relationship with C. wailesii. Coscinodiscus was found to be monophyletic in the phylogeny. The complete mtDNAs of more Coscinodiscus species will facilitate the exploration of the evolutionary relationships of species in the Class Coscinodiscophyceae.
Collapse
Affiliation(s)
- Hailong Huang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Huiyin Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Zengxia Zhao
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Feng Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
11
|
Yao Y, Liu F, Chen N. Complete mitochondrial genome of Rhizosolenia setigera (Coscinodiscophyceae, Bacillariophyta). MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:2319-2321. [PMID: 34291170 PMCID: PMC8279148 DOI: 10.1080/23802359.2021.1950059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Rhizosolenia is a species-rich genus with 144 described species, many of which are harmful algal species (HABs) with significant negative ecological impact. Despite their significance in primary production and their potential to induce HABs, genome data of these species remain extremely limited. In this study, the complete mitochondrial genome (mtDNA) of Rhizosolenia setigera Brightwell 1858 was determined for the first time, which also represented the first mtDNA of the order Rhizosoleniales. The circular mtDNA was 34,792 bp in length with GC content of 23.28%. It encoded 63 genes including 35 protein-coding genes (PCGs), 24 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes, and 2 conserved open reading frames (orfs). Phylogenetic analysis using concatenated PCGs revealed that R. setigera and Melosira undulate, which also belongs to the class Coscinodiscophyceae, clustered together as expected. However, comparison of these two mtDNAs revealed extensive genome rearrangement events, suggesting large evolutionary distance. The complete mtDNA of R. setigera will facilitate research on the phylogenetic relationship among Rhizosolenia species, which will in turn facilitate exploration of the evolutionary relationships in the class of Coscinodiscophyceae.
Collapse
Affiliation(s)
- Yanxin Yao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,School of Earth and Planetary, University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Feng Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
12
|
Starko S, Bringloe TT, Soto Gomez M, Darby H, Graham SW, Martone PT. Genomic Rearrangements and Sequence Evolution across Brown Algal Organelles. Genome Biol Evol 2021; 13:evab124. [PMID: 34061182 PMCID: PMC8290108 DOI: 10.1093/gbe/evab124] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Organellar genomes serve as useful models for genome evolution and contain some of the most widely used phylogenetic markers, but they are poorly characterized in many lineages. Here, we report 20 novel mitochondrial genomes and 16 novel plastid genomes from the brown algae. We focused our efforts on the orders Chordales and Laminariales but also provide the first plastid genomes (plastomes) from Desmarestiales and Sphacelariales, the first mitochondrial genome (mitome) from Ralfsiales and a nearly complete mitome from Sphacelariales. We then compared gene content, sequence evolution rates, shifts in genome structural arrangements, and intron distributions across lineages. We confirm that gene content is largely conserved in both organellar genomes across the brown algal tree of life, with few cases of gene gain or loss. We further show that substitution rates are generally lower in plastid than mitochondrial genes, but plastomes are more variable in gene arrangement, as mitomes tend to be colinear even among distantly related lineages (with exceptions). Patterns of intron distribution across organellar genomes are complex. In particular, the mitomes of several laminarialean species possess group II introns that have T7-like ORFs, found previously only in mitochondrial genomes of Pylaiella spp. (Ectocarpales). The distribution of these mitochondrial introns is inconsistent with vertical transmission and likely reflects invasion by horizontal gene transfer between lineages. In the most extreme case, the mitome of Hedophyllum nigripes is ∼40% larger than the mitomes of close relatives because of these introns. Our results provide substantial insight into organellar evolution across the brown algae.
Collapse
Affiliation(s)
- Samuel Starko
- Department of Biology, University of Victoria, Victoria, Canada
- Department of Botany & Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Trevor T Bringloe
- Department of BioSciences, University of Melbourne, Melbourne, Australia
| | - Marybel Soto Gomez
- Department of Botany & Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Hayley Darby
- Department of Botany & Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Sean W Graham
- Department of Botany & Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Patrick T Martone
- Department of Botany & Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| |
Collapse
|
13
|
Huang H, Wang Y, Song H, Wang J, Chen Y, Zhao Y, Liu F, Chen N. The complete mitochondrial genome and phylogenetic analysis of Coscinodiscus wailesii (Coscinodiscophyceae, Bacillariophyta). MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:1849-1851. [PMID: 34124366 PMCID: PMC8183543 DOI: 10.1080/23802359.2021.1934578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Coscinodiscus is a species-rich genus with about 400 species described, many of which are harmful algal bloom species with significant negative ecological impact. Despite of their importance in primary production and as harmful algal bloom species, genome data for species in this genus is limited. No mitochondrial genome (mtDNA) of any species in this genus has been reported. Here, the complete mtDNA sequence of the Coscinodiscus wailesii Gran & Angst 1931 was constructed and analyzed. The circular mtDNA was 36,071 bp in length, encoding 64 genes, including 34 protein coding genes (PCGs), 24 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes and 4 conserved open reading frames (orfs). The overall AT content of C. wailesii mtDNA was 75.00%, which was slightly lower than that of Melosira undulate (78.40%). Maximum likelihood (ML) phylogenetic analysis using 29 shared protein-coding genes revealed that C. wailesii clustered well with M. undulata, which was the only species of class Coscinodiscophyceae whose mtDNA has been fully constructed. The complete mtDNAs of more Coscinodiscus species will be valuable for studying the evolutionary relationships among species in the genus Coscinodiscus and in the Class of Coscinodiscophyceae.
Collapse
Affiliation(s)
- Hailong Huang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yichao Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Huiyin Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jing Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yang Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yongfang Zhao
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Feng Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
14
|
Gastineau R, Hansen G, Poulin M, Lemieux C, Turmel M, Bardeau JF, Leignel V, Hardivillier Y, Morançais M, Fleurence J, Gaudin P, Méléder V, Cox EJ, Davidovich NA, Davidovich OI, Witkowski A, Kaczmarska I, Ehrman JM, Soler Onís E, Quintana AM, Mucko M, Mordret S, Sarno D, Jacquette B, Falaise C, Séveno J, Lindquist NL, Kemp PS, Eker-Develi E, Konucu M, Mouget JL. Haslea silbo, A Novel Cosmopolitan Species of Blue Diatoms. BIOLOGY 2021; 10:biology10040328. [PMID: 33919887 PMCID: PMC8070900 DOI: 10.3390/biology10040328] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/26/2022]
Abstract
Specimens of a new species of blue diatoms from the genus Haslea Simonsen were discovered in geographically distant sampling sites, first in the Canary Archipelago, then North Carolina, Gulf of Naples, the Croatian South Adriatic Sea, and Turkish coast of the Eastern Mediterranean Sea. An exhaustive characterization of these specimens, using a combined morphological and genomic approach led to the conclusion that they belong to a single new to science cosmopolitan species, Haslea silbo sp. nov. A preliminary characterization of its blue pigment shows similarities to marennine produced by Haslea ostrearia, as evidenced by UV-visible spectrophotometry and Raman spectrometry. Life cycle stages including auxosporulation were also observed, providing data on the cardinal points of this species. For the two most geographically distant populations (North Carolina and East Mediterranean), complete mitochondrial and plastid genomes were sequenced. The mitogenomes of both strains share a rare atp6 pseudogene, but the number, nature, and positions of the group II introns inside its cox1 gene differ between the two populations. There are also two pairs of genes fused in single ORFs. The plastid genomes are characterized by large regions of recombination with plasmid DNA, which are in both cases located between the ycf35 and psbA genes, but whose content differs between the strains. The two sequenced strains hosts three plasmids coding for putative serine recombinase protein whose sequences are compared, and four out of six of these plasmids were highly conserved.
Collapse
Affiliation(s)
- Romain Gastineau
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland; (N.A.D.); (A.W.)
- Correspondence:
| | - Gert Hansen
- Department of Biology, University of Copenhagen, Universitetsparken 4, 2100 Copenhagen, Denmark;
| | - Michel Poulin
- Research and Collections, Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, ON K1P 6P4, Canada;
| | - Claude Lemieux
- Département de biochimie, de microbiologie et de Bio-Informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada; (C.L.); (M.T.)
| | - Monique Turmel
- Département de biochimie, de microbiologie et de Bio-Informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC G1V 0A6, Canada; (C.L.); (M.T.)
| | - Jean-François Bardeau
- Institut des Molécules et Matériaux du Mans (IMMM UMR 6283), Le Mans Université, Avenue Olivier Messiaen, CEDEX 9, 72085 Le Mans, France; (J.-F.B.); (B.J.)
| | - Vincent Leignel
- FR CNRS 3473 IUML, Mer-Molécules-Santé (MMS, EA 2160), Le Mans Université, Avenue Olivier Messiaen, CEDEX 9, 72085 Le Mans, France; (V.L.); (Y.H.); (C.F.); (J.S.); (J.-L.M.)
| | - Yann Hardivillier
- FR CNRS 3473 IUML, Mer-Molécules-Santé (MMS, EA 2160), Le Mans Université, Avenue Olivier Messiaen, CEDEX 9, 72085 Le Mans, France; (V.L.); (Y.H.); (C.F.); (J.S.); (J.-L.M.)
| | - Michèle Morançais
- FR CNRS 3473 IUML, Mer-Molécules-Santé (MMS, EA 2160), Université de Nantes, 2 rue de la Houssinière, CEDEX 3, 44322 Nantes, France; (M.M.); (J.F.); (V.M.)
| | - Joël Fleurence
- FR CNRS 3473 IUML, Mer-Molécules-Santé (MMS, EA 2160), Université de Nantes, 2 rue de la Houssinière, CEDEX 3, 44322 Nantes, France; (M.M.); (J.F.); (V.M.)
| | - Pierre Gaudin
- UMR 6112 CNRS LPG, Laboratoire de Planétologie et Géosciences, Nantes Université, 2 rue de la Houssinière, CEDEX 3, 44322 Nantes, France;
| | - Vona Méléder
- FR CNRS 3473 IUML, Mer-Molécules-Santé (MMS, EA 2160), Université de Nantes, 2 rue de la Houssinière, CEDEX 3, 44322 Nantes, France; (M.M.); (J.F.); (V.M.)
| | - Eileen J. Cox
- The Natural History Museum, Cromwell Road, London SW7 5BD, UK;
| | - Nikolaï A. Davidovich
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland; (N.A.D.); (A.W.)
- Karadag Scientific Station–Natural Reserve of the Russian Academy of Sciences, p/o Kurortnoe, Feodosiya, 98188 Crimea, Russia;
| | - Olga I. Davidovich
- Karadag Scientific Station–Natural Reserve of the Russian Academy of Sciences, p/o Kurortnoe, Feodosiya, 98188 Crimea, Russia;
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland; (N.A.D.); (A.W.)
| | - Irena Kaczmarska
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada;
| | - James M. Ehrman
- Digital Microscopy Facility, Mount Allison University, Sackville, NB E4L 1G7, Canada;
| | - Emilio Soler Onís
- Observatorio Canario de Algas Nocivas (OCHABs), Parque Científico Tecnólogico Marino de Taliarte (FPCT-ULPGC), c/ Miramar, 121 Taliarte, 35214 Las Palmas, Canary Islands, Spain;
| | - Antera Martel Quintana
- Banco Español de Algas (BEA), Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria (ULPGC), Muelle de Taliarte s/n, 35214 Telde, Islas Canarias, Spain;
| | - Maja Mucko
- Faculty of Science, Biology Department, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia;
| | - Solenn Mordret
- Department of Research Infrastructure for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (S.M.); (D.S.)
| | - Diana Sarno
- Department of Research Infrastructure for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (S.M.); (D.S.)
| | - Boris Jacquette
- Institut des Molécules et Matériaux du Mans (IMMM UMR 6283), Le Mans Université, Avenue Olivier Messiaen, CEDEX 9, 72085 Le Mans, France; (J.-F.B.); (B.J.)
| | - Charlotte Falaise
- FR CNRS 3473 IUML, Mer-Molécules-Santé (MMS, EA 2160), Le Mans Université, Avenue Olivier Messiaen, CEDEX 9, 72085 Le Mans, France; (V.L.); (Y.H.); (C.F.); (J.S.); (J.-L.M.)
| | - Julie Séveno
- FR CNRS 3473 IUML, Mer-Molécules-Santé (MMS, EA 2160), Le Mans Université, Avenue Olivier Messiaen, CEDEX 9, 72085 Le Mans, France; (V.L.); (Y.H.); (C.F.); (J.S.); (J.-L.M.)
| | - Niels L. Lindquist
- Institute of Marine Sciences, University of North Carolina, Chapel Hill, Morehead City, NC 28557, USA;
| | - Philip S. Kemp
- Kemp Fisheries LLC, 2333 Shore Drive, Morehead City, NC 28557, USA;
| | - Elif Eker-Develi
- Institute of Graduate Studies in Science, Department of Biotechnology, Mersin University, Ciftlikkoy, Mersin 33343, Turkey; (E.E.-D.); (M.K.)
| | - Merve Konucu
- Institute of Graduate Studies in Science, Department of Biotechnology, Mersin University, Ciftlikkoy, Mersin 33343, Turkey; (E.E.-D.); (M.K.)
- BW24-Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, B9000 Gent, Belgium
| | - Jean-Luc Mouget
- FR CNRS 3473 IUML, Mer-Molécules-Santé (MMS, EA 2160), Le Mans Université, Avenue Olivier Messiaen, CEDEX 9, 72085 Le Mans, France; (V.L.); (Y.H.); (C.F.); (J.S.); (J.-L.M.)
| |
Collapse
|
15
|
Zhang M, Cui Z, Liu F, Chen N. Definition of a High-Resolution Molecular Marker for Tracking the Genetic Diversity of the Harmful Algal Species Eucampia zodiacus Through Comparative Analysis of Mitochondrial Genomes. Front Microbiol 2021; 12:631144. [PMID: 33841358 PMCID: PMC8024477 DOI: 10.3389/fmicb.2021.631144] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Abstract
The cosmopolitan phytoplankton species Eucampia zodiacus is a common harmful algal bloom (HAB) species that have been found to cause HABs in essentially all coastal regions except the Polar regions. However, molecular information for this HAB species is limited with only a few molecular markers. In this project, we constructed the mitochondrial genome (mtDNA) of E. zodiacus, which was also the first mtDNA constructed for any species in the order Hemiaulales that includes 145 reported species (including two additional HAB species Cerataulina bicornis and Cerataulina pelagica). Comparative analysis of eight E. zodiacus strains revealed that they could not be distinguished using common molecular markers, suggesting that common molecular markers do not have adequate resolution for distinguishing E. zodiacus strains. However, these E. zodiacus strains could be distinguished using whole mtDNAs, suggesting the presence of different genotypes due to evolutionary divergence. Through comparative analysis of the mtDNAs of multiple E. zodiacus strains, we identified a new molecular marker ezmt1 that could adequately distinguish different E. zodiacus strains isolated in various coastal regions in China. This molecular marker ezmt1, which was ∼400 bp in size, could be applied to identify causative genotypes during E. zodiacus HABs through tracking the dynamic changes of genetic diversity of E. zodiacus in HABs.
Collapse
Affiliation(s)
- Mengjia Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Institute of Oceanology, University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zongmei Cui
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Institute of Oceanology, University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Feng Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
16
|
Khani-Juyabad F, Mohammadi P, Zarrabi M. Comparative analysis of Chlorosarcinopsis eremi mitochondrial genome with some Chlamydomonadales algae. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:1301-1310. [PMID: 31564790 PMCID: PMC6745591 DOI: 10.1007/s12298-019-00696-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 06/07/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Chlorosarcinopsis eremi is a member of Chlamydomonadales algae which is isolated from terrestrial environments. In this study, the mitochondrial genome of C. eremi isolated from desert region of Iran, was represented for the first time. Following sequencing, assembly and annotation, comparative analyses of C. eremi and other available Chlamydomonadales algae complete mitochondrial genomes were performed. The mitochondrial genome of C. eremi was circular, had a low number of genes coding in the same strand with a minor amount of repeated sequences; same as other non-Reinhardtinia species of Chlamydomonadales algae. GC content of C. eremi mitochondrial genome was in normal range when compared with non-Chlamydomonadales organisms, but among Chlamydomonadales algae, C. eremi had a low GC content mitochondrial genome. C. eremi had the highest percent of non-coding sequences in comparison with other available Chlamydomonadales mitochondrial genomes which was related to intergenic regions. Identity analysis of protein-coding sequences of Chlamydomonadales mitochondrial genomes showed more divergences and may be related to the high mutation rate of mitochondrial genome reported in microbial eukaryotes.
Collapse
Affiliation(s)
- Fatemeh Khani-Juyabad
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Parisa Mohammadi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Mahbubeh Zarrabi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| |
Collapse
|
17
|
Hamsher SE, Keepers KG, Pogoda CS, Stepanek JG, Kane NC, Kociolek JP. Extensive chloroplast genome rearrangement amongst three closely related Halamphora spp. (Bacillariophyceae), and evidence for rapid evolution as compared to land plants. PLoS One 2019; 14:e0217824. [PMID: 31269054 PMCID: PMC6608930 DOI: 10.1371/journal.pone.0217824] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 05/21/2019] [Indexed: 01/08/2023] Open
Abstract
Diatoms are the most diverse lineage of algae, but the diversity of their chloroplast genomes, particularly within a genus, has not been well documented. Herein, we present three chloroplast genomes from the genus Halamphora (H. americana, H. calidilacuna, and H. coffeaeformis), the first pennate diatom genus to be represented by more than one species. Halamphora chloroplast genomes ranged in size from ~120 to 150 kb, representing a 24% size difference within the genus. Differences in genome size were due to changes in the length of the inverted repeat region, length of intergenic regions, and the variable presence of ORFs that appear to encode as-yet-undescribed proteins. All three species shared a set of 161 core features but differed in the presence of two genes, serC and tyrC of foreign and unknown origin, respectively. A comparison of these data to three previously published chloroplast genomes in the non-pennate genus Cyclotella (Thalassiosirales) revealed that Halamphora has undergone extensive chloroplast genome rearrangement compared to other genera, as well as containing variation within the genus. Finally, a comparison of Halamphora chloroplast genomes to those of land plants indicates diatom chloroplast genomes within this genus may be evolving at least ~4–7 times faster than those of land plants. Studies such as these provide deeper insights into diatom chloroplast evolution and important genetic resources for future analyses.
Collapse
Affiliation(s)
- Sarah E. Hamsher
- Department of Biology, Grand Valley State University, Allendale, Michigan, United States of America
- Annis Water Resources Institute, Grand Valley State University, Muskegon, Michigan, United States of America
- * E-mail:
| | - Kyle G. Keepers
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Cloe S. Pogoda
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Joshua G. Stepanek
- Department of Biology, Colorado Mountain College, Edwards, Colorado, United States of America
| | - Nolan C. Kane
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America
| | - J. Patrick Kociolek
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America
- Museum of Natural History, University of Colorado, Boulder, Colorado, United States of America
| |
Collapse
|