1
|
Du R, Zhong Q, Tan X, Liao L, Tang Z, Chen S, Yan D, Zhao X, Zeng F. Optimized Electrodeposition of Ni 2O 3 on Carbon Paper for Enhanced Electrocatalytic Oxidation of Ethanol. ACS OMEGA 2024; 9:30404-30414. [PMID: 39035965 PMCID: PMC11256107 DOI: 10.1021/acsomega.4c01658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 07/23/2024]
Abstract
The urgent need for sustainable and efficient energy conversion technologies has propelled research into novel electrocatalysts for fuel cell applications. This study investigates a carbon paper (CP)-supported Ni2O3 catalyst for the electrocatalytic oxidation of ethanol. We utilized electrodeposition to uniformly deposit/dop Ni2O3 onto the CP, creating an effective electrocatalyst. Our approach allows the tailoring of the doping degree by adjusting the electrodeposition potential. The optimal doping degree, achieved at a medium deposition potential, results in an electrode with high intrinsic activity and a substantial electrochemically active surface area (ECSA), thereby enhancing its electrocatalytic activity. This catalyst efficiently facilitates the oxidation of ethanol to formic acid while maintaining good stability. The enhanced performance is attributed to the effective interface and interaction between Ni2O3 and CP. This work not only provides insights into the design of efficient Ni-based catalysts for ethanol oxidation but also paves the way for developing advanced materials for renewable energy conversion.
Collapse
Affiliation(s)
- Ruixing Du
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Qitong Zhong
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Xing Tan
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Longfei Liao
- School
of Materials Science and Engineering, Harbin
Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Zhenchen Tang
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Shiming Chen
- School
of Intelligent Medicine, China Medical University, Shenyang 110122, Liaoning, China
| | - Dafeng Yan
- College
of Chemistry and Chemical Engineering, Hubei
University, Wuhan 430062, China
| | - Xuebin Zhao
- Technology
Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China
| | - Feng Zeng
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| |
Collapse
|